系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (11): 2497-2505.doi: 10.3969/j.issn.1001-506X.2020.11.11
收稿日期:
2020-01-05
出版日期:
2020-11-01
发布日期:
2020-11-05
作者简介:
骆伟林(1995-),男,硕士研究生,主要研究方向为信息传输与信息系统技术。E-mail:基金资助:
Weilin LUO(), Hongbin JIN(
), Hao LI(
), Ronghua ZHOU(
)
Received:
2020-01-05
Online:
2020-11-01
Published:
2020-11-05
摘要:
针对传统独立成分分析(independent component analysis, ICA)方法存在收敛速度慢、分离性能不高的问题,将混沌映射策略与自适应爆炸半径相结合,提出一种基于混沌自适应烟花算法(chaotic adaptive fireworks algorithm, CAFWA)的盲源分离(blind source separation, BSS)方法,并应用于雷达辐射源混合信号分选问题。混沌映射策略可以将初始值在解空间内分布更加均匀,爆炸半径能够根据适应度的优劣自适应改变,保证了所提算法局部搜索的精度,满足了全局搜索的多样性。实验结果表明所提算法可以在无噪和有噪情况下均能很好地分选观测信号,而且具有比传统算法更快的收敛速度和更优异的分选性能。
中图分类号:
骆伟林, 金宏斌, 李浩, 周荣华. 基于混沌自适应烟花算法的雷达信号盲源分离[J]. 系统工程与电子技术, 2020, 42(11): 2497-2505.
Weilin LUO, Hongbin JIN, Hao LI, Ronghua ZHOU. Blind source separation of radar signals based on chaotic adaptive firework algorithm[J]. Systems Engineering and Electronics, 2020, 42(11): 2497-2505.
表1
常用混沌映射"
混沌映射名称 | 表达式 |
Logistic | |
ICMIC | |
Chebyshev | |
Tent | |
1 | 艾小凡, 罗勇江, 赵国庆. 基于累积张量分解的雷达信号欠定盲分离算法[J]. 系统工程与电子技术, 2016, 38 (11): 2505- 2509. |
AI X F , LUO Y J , ZHAO G Q . Underdetermined blind separation of radar signals based on tensor decomposition[J]. Systems Engineering and Electronics, 2016, 38 (11): 2505- 2509. | |
2 | WANG X , HUANG Z , ZHOU Y . Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method[J]. Journal of Systems Engineering and Electronics, 2014, 25 (1): 17- 25. |
3 | 王红卫, 范翔宇, 陈游, 等. 基于循环平稳度准则的多路雷达信号识别算法[J]. 兵工学报, 2016, 37 (4): 661- 669. |
WANG H W , FAN X Y , CHEN Y , et al. Multichannel radar signal recognition algorithm based on DCS[J]. Acta Armamentarii, 2016, 37 (4): 661- 669. | |
4 |
MAHLER V V . CPHD filtering with unknown clutter rate and detection profile[J]. IEEE Trans. on Signal Processing, 2011, 59 (8): 3497- 3513.
doi: 10.1109/TSP.2011.2128316 |
5 | GE M M, CUI G L, YU X X, et al. Main lobe jamming suppression via blind source separation[C]//Proc.of the IEEE Radar Conference, 2018: 914-918. |
6 | 付卫红, 刘乃安, 杨小牛, 等. 基于相对梯度的鲁棒的盲源分离算法[J]. 系统工程与电子技术, 2010, 32 (2): 226- 228. |
FU W H , LIU N A , YANG X N , et al. Robust blind source separation algorithm based on relative-gradient[J]. Systems Engineering and Electronics, 2010, 32 (2): 226- 228. | |
7 | LEE T W , GIROLAMI M , SEJNOWSKI T J . Independent component analysis using an extended informax algorithm for mixedsub-Gaussian and super-Gaussian sources[J]. Neural Computation, 1999, 11 (1): 417- 441. |
8 |
BELL A , SEJNOW SKI T . An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7 (6): 1129- 1159.
doi: 10.1162/neco.1995.7.6.1129 |
9 |
AMARIS . Natural gradient works efficiently in learning[J]. Neural Computation, 1998, 10 (2): 251- 276.
doi: 10.1162/089976698300017746 |
10 |
CARDOSO J F , DONOHO D L . Equivariant adaptive source separation[J]. IEEE Trans. on Signal Process, 1996, 44, 3017- 3030.
doi: 10.1109/78.553476 |
11 | CARDOSO J F , SOULOUMIAC A . Blind beamforming for non-Gaussian signals[J]. IEEE Proceedings-F, 1993, 140 (6): 362- 370. |
12 |
HYVARINEN A , OJA E . A fast fixed point algorithm for independent component analysis[J]. Neural Computation, 1997, 9 (7): 1483- 1492.
doi: 10.1162/neco.1997.9.7.1483 |
13 | LI H , JIN H B , WANG H Z , et al. Improved adaptive holonic particle swarm optimization[J]. Mathematical Problems in Engineering, 2019, 1- 22. |
14 |
AMREEK S , KUSUM D . Artificial bee colony algorithm with improved search mechanism[J]. Soft Computing, 2019, 23 (23): 12437- 12460.
doi: 10.1007/s00500-019-03785-y |
15 | 孙远, 杨峰, 郑晶, 等. 基于膜计算与粒子群算法的盲源分离方法[J]. 振动与冲击, 2018, 37 (17): 63- 71. |
SUN Y , YANG F , ZHENG J , et al. Blind source separation method based on membrane computing and PSO algorithm[J]. Journal of Vibration and Shock, 2018, 37 (17): 63- 71. | |
16 | XI Z H , BIAN L J , JIN Y . A novel blind source separation method based on improved particle swarm optimization[J]. Applied Science and Technology, 2010, 37 (1): 12- 14, 22. |
17 | 季策, 单长芳, 沙毅, 等. 基于分组简化粒子群算法的盲源分离[J]. 东北大学学报, 2018, 39 (6): 787- 791. |
JI C , SHAN C F , SHA Y , et al. Blind source separation based on grouping simplified particle swarm optimization algorithm[J]. Journal of Northeastern University, 2018, 39 (6): 787- 791. | |
18 | LUO T H , ZHANG C . Blind source separation using the particle swarm optimization algorithm with gradient acceleration[J]. Computer Simulation, 2010, 27 (10): 112- 115. |
19 |
WANG R J , ZHAN Y J , ZHOU H F . A class of sequential blind source separation method in order using swarm optimization algorithm[J]. Circuits Systems and Signal Processing, 2016, 35 (9): 3220- 3243.
doi: 10.1007/s00034-015-0192-4 |
20 | 陈雷, 甘士忠, 张立毅, 等. 基于样条插值与人工蜂群优化的非线性盲源分离算法[J]. 通信学报, 2017, 38 (7): 36- 46. |
CHEN L , GAN S Z , ZHANG L Y , et al. Nonlinear blind source separation algorithm based on spline interpolation and artificial bee colony optimization[J]. Journal on Communications, 2017, 38 (7): 36- 46. | |
21 | WEN G J, ZHANG C X, LIN Z R, et al. Independent component analysis based on genetical algorithms[C]//Proc.of the International Conference on Natural Computation, 2014: 214-218. |
22 | BOHM M , STADLTHANNER K , GRUBER P , et al. On the use of simulated annealing toautomatically assign decorrelated components in second-order blind source separation[J]. IEEE Trans. on Biomedical Engineering, 2006, 53 (5): 810- 820. |
23 | 陈一飞.盲源分离在雷达侦察中的应用[D].西安:西安电子科技大学, 2017. |
CHEN Y F. Research on application of blind source separation in radar reconnaissance[D]. Xi'an: Xidian University, 2017. | |
24 | COMON P . Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36 (3): 287- 314. |
25 |
HACINE G A , DERICHE M , RAVIER P , et al. A new histogram-based estimation technique of entropy and mutual information using mean equared error minimization[J]. Computers and Electrical Engineering, 2013, 39, 918- 933.
doi: 10.1016/j.compeleceng.2013.02.010 |
26 | 张朝柱, 张健沛, 孙晓东. 基于自适应粒子群优化的盲源分离[J]. 系统工程与电子技术, 2009, 31 (6): 1275- 1278. |
ZHANG C Z , ZHANG J P , SUN X D . Blind source separation based on adaptive particle swarm optimization[J]. Systems Engineering and Electronics, 2009, 31 (6): 1275- 1278. | |
27 | TAN Y , ZHU Y . Fireworks algorithm for optimization[M]. Berlin: Springer, 2010: 355- 364. |
28 | 李浩, 柏鹏, 张辉, 等. 反向烟花算法及其应用研究[J]. 西安交通大学学报, 2015, 49 (11): 82- 88. |
LI H , BAI P , ZHANG H , et al. Backward fireworks algorithm application research[J]. Journal of Xi'an Jiao Tong University, 2015, 49 (11): 82- 88. | |
29 | 马艳艳, 金宏斌, 李浩, 等. 空基雷达组网收发分置协同探测编队构型优化[J]. 空军预警学院学报, 2019, 33 (6): 436- 441. |
MA Y Y , JIN H B , LI H , et al. Configuration optimization of bistatic cooperative detectionfor air-based radar networking[J]. Journal of Air Force Early Warning Academy, 2019, 33 (6): 436- 441. | |
30 | 赵欣. 不同一维混沌映射的优化性能比较研究[J]. 计算机应用研究, 2012, 19 (3): 913- 915. |
ZHAO X . Comparative study on theoptimization performance of different one-dimensional chaotic maps[J]. Computer Applied Research, 2012, 29 (3): 913- 915. | |
31 | WATKINS D S. Fundamentals of matrix computations[M]. 2nd ed. New York: Wiley, 2002: 192-194. |
[1] | 赵英健, 田波, 王春阳, 宫健, 谭铭, 周长霖. 基于FDA-MIMO雷达的主瓣SMSP干扰空时域联合抑制方法[J]. 系统工程与电子技术, 2022, 44(7): 2157-2165. |
[2] | 杨占刚, 徐海义, 成博源, 石旭东. 基于FWA-DBN的航空发电机偏心故障诊断[J]. 系统工程与电子技术, 2022, 44(5): 1757-1764. |
[3] | 谢家豪, 黄树彩, 韦道知, 张曌宇, 王文豪. 基于PEV准则的不确定混合多传感器联盟求解[J]. 系统工程与电子技术, 2022, 44(3): 819-826. |
[4] | 赵孟晨, 姚秀娟, 王静, 董苏惠. 基于Stacked-TCN的空间混叠信号单通道盲源分离方法[J]. 系统工程与电子技术, 2021, 43(9): 2628-2636. |
[5] | 高霞, 全英汇, 李亚超, 朱圣棋, 邢孟道. 基于BSS的FDA-MIMO雷达主瓣欺骗式干扰抑制方法[J]. 系统工程与电子技术, 2020, 42(9): 1927-1934. |
[6] | 罗沅, 党娇娇, 宋祖勋, 王保平. 离散混沌测量矩阵构造及其性能研究[J]. 系统工程与电子技术, 2020, 42(4): 749-755. |
[7] | 季策, 张晓梦. 基于MS-ROMP信号重构算法的欠定盲分离[J]. 系统工程与电子技术, 2020, 42(4): 756-763. |
[8] | 季策, 穆文欢, 耿蓉. 基于A-DBSCAN的欠定盲源分离算法[J]. 系统工程与电子技术, 2020, 42(12): 2676-2683. |
[9] | 田桂林, 刘昌云, 高嘉乐, 吴舒然. 基于烟花算法的多传感器优化模型部署#br#[J]. 系统工程与电子技术, 2019, 41(8): 1742-1748. |
[10] | 余敏建, 游航航, 韩其松, 杨海燕, 高阳阳. 基于改进烟花算法的空战指挥引导对策生成[J]. 系统工程与电子技术, 2019, 41(12): 2780-2788. |
[11] | 刘久富, 丁晓彬, 郑锐, 王彪, 刘海阳, 王志胜. 混沌量子粒子群的权重类条件贝叶斯网络分类器参数学习[J]. 系统工程与电子技术, 2019, 41(10): 2304-2309. |
[12] | 周必雷, 李荣锋, 陈风波, 刘维建, 邵银波, 王永良. 基于盲分离的空时联合处理抗复合干扰方法[J]. 系统工程与电子技术, 2018, 40(11): 2393-. |
[13] | 薛俊杰, 王瑛, 孟祥飞, 肖吉阳. 二进制反向学习烟花算法求解多维背包问题[J]. 系统工程与电子技术, 2017, 39(2): 451-458. |
[14] | 唐宁, 郭英, 张坤峰. 基于SCA的欠定跳频网台分选方法[J]. 系统工程与电子技术, 2017, 39(12): 2817-2823. |
[15] | 胡星, 马林华, 孙康宁, 黄天宇, 刘士平. 高阶量纠错码理论限及软判决编译码算法[J]. 系统工程与电子技术, 2017, 39(10): 2312-2319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||