Journal of Systems Engineering and Electronics ›› 2012, Vol. 34 ›› Issue (2): 348-352.doi: 10.3969/j.issn.1001-506X.2012.02.25

• 制导、导航与控制 • 上一篇    下一篇

动力学模型系统误差及其协方差阵的随机加权拟合法

冯志华1,2, 高社生1, 陈丽容2, 焦雅林1   

  1. 1. 西北工业大学自动化学院, 陕西 西安 710072;
    2. 北京计算机技术及应用研究所, 北京 100854
  • 出版日期:2012-02-15 发布日期:2010-01-03

Random weighting fitting method of systemic errors and covariance matrices in dynamic model

FENG Zhihua1,2, GAO Shesheng1, CHEN Lirong2, JIAO Yalin1   

  1. 1. School of Automation, Northwest Polytechnic University, Xi’an 710072, China;
    2. Beijing Institute of Computer Technology and Applications, Beijing 100854, China
  • Online:2012-02-15 Published:2010-01-03

摘要:

在现有的基于移动窗口函数模型和随机模型系统误差自适应拟合方法的基础上,提出一种基于移动窗口动态导航模型系统误差的随机加权拟合法,在相同的窗口内给出了相应的状态预报向量协方差阵的随机加权拟合。由于动力学模型系统误差难以直接修正,采用修正状态估计误差向量及动力学模型误差向量的方法,实现对动力学模型系统误差的修正,然后利用修正后的动力学模型及相应的协方差阵进行导航滤波计算,有效地抑制动力学模型系统系统误差的影响,提高导航解算的精度。仿真结果证明,采用随机加权拟合后的算法精度优于未进行拟合的卡尔曼滤波和自适应卡尔曼滤波算法。

Abstract:

On the basis of adaptive fitting method which is based on the existing mobile window function model and the stochastic model system error, a random weighting fitting method for both the systematic errors and covariance matrices of kinematics navigation model errors is presented by using moving windows. The random weighting estimation for covariance matrices of predicted states are given within the same window; the covariance matrices of the modified predicted states are also estimated. The predicted states are then modified. It is shown by the calculation and simulation results that the random weighting estimation algorithm can effectively resist the influence of the systematic errors on the estimated states of navigation, and the performance is superior to the traditional method without random weighting estimation algorithm.