系统工程与电子技术

• 传感器与信号处理 • 上一篇    下一篇

PhasedMIMO雷达恒模正交波形优化设计 Phased-MIMO雷达恒模正交波形优化设计

陈志坤1, 冯翔1, 李风从2, 乔晓林1, 赵宜楠1   

  1. 1. 哈尔滨工业大学电子与信息工程学院, 黑龙江 哈尔滨 150001;
    2. 南方科技大学电子与电气工程学院, 广东 深圳 518000
  • 出版日期:2016-05-25 发布日期:2010-01-03

Constant orthogonal waveform optimal design for Phased-MIMO radar

CHEN Zhi-kun1, FENG Xiang1, LI Feng-cong2, QIAO Xiao-lin1, ZHAO Yi-nan1   

  1. 1. School of Electronics and Information Engineering, Harbin Institute of Technology,
    Harbin 150001, China; 2. Department of Electronical & Electronic Engineering, South University of
    Science and Technology of China, Shenzhen 518000, China
  • Online:2016-05-25 Published:2010-01-03

摘要:

由于受到发射机功率和波形能量的限制,现代雷达系统一般选择恒模波形来实现发射功率的最大化利用。针对PhasedMIMO雷达子阵单元之间的恒模正交波形优化设计问题,基于矩阵谱逼近的思想,本文提出了一种新的波形设计框架。首先假设输出信干比的需求得到划分的子阵数目,根据最大信噪比准则对子阵单元进行波束形成,提高了雷达系统的抗干扰性能,其次采用迭代矩阵谱逼近算法(iterative matrix spectral approximation algorithm, IMSAA)对子阵单元之间的正交波形进行优化设计,相对于multi-CAN算法,该算法能够获得更好的相关性能,而且运算效率较高,最终实现了恒模波形的优化设计。仿真结果证明了算法的有效性。

Abstract:

By the limit of transmitter power and waveform energy, modern radar generally chooses constant modulus waveform to achieve the goal that maximum use of transmission power. We address the optimization problem of constant modular orthogonal waveform design for Phased-multiple input multiple output (MIMO) radar, and a new waveform optimal design framework for Phase-MIMO radar based on the matrix spectral approximation is presented. First, the number of subarray can be obtained by the requirements of signal to noise ratio (SNR), the beam of subarray is patterned according to the maximum SNR criterion, effectively improving the anti-jamming performance of the radar system. Then, the orthogonal waveform among subarray units is optimized via the iterative matrix spectral approximation algorithm (IMSAA), which has a better correlation performance and is more computationally efficient than multi-CAN. Finally, the constant modulus signal is optimally designed. Simulation results demonstrate the effectiveness of the proposed algorithm.