系统工程与电子技术

• 传感器与信号处理 • 上一篇    下一篇

基于贝叶斯压缩感知的CSR稳健参数估计方法

代林, 崔琛, 余剑, 梁浩   

  1. 电子工程学院通信对抗系, 安徽 合肥 230037
  • 出版日期:2015-10-27 发布日期:2010-01-03

Robust parameter estimation method for CSR based on Bayesian compressed sensing

DAI Lin, CUI Chen, YU Jian, LIANG Hao   

  1. Department of Communication Countermeasure, Institute of Elctronic Engineering, Hefei 230037, China
  • Online:2015-10-27 Published:2010-01-03

摘要:

针对“完全扰动”情况下压缩感知雷达(compressed sensing radar, CSR)观测矢量和感知矩阵严重失配,进而引起参数估计性能急剧下降的问题,提出了一种基于贝叶斯压缩感知(Bayesian compressed sensing, BCS)的稳健参数估计方法。首先构造“完全扰动”情况下CSR参数估计的稀疏线性模型,并从稀疏矢量的最大后验概率(maximum a posteriori, MAP)出发,推导了完全扰动矩阵服从柯西分布时的优化目标函数;随后通过稀疏矢量和尺度参数的交替迭代,求得稀疏矢量的最优解。与现有重构算法及其改进算法相比,该方法能够有效改善CSR系统应对失配误差的稳健性,提高目标成功检测的概率和参数估计的精度。计算机仿真实验验证了该方法的有效性和鲁棒性。

Abstract:

In practical application, the mismatch between measurement vector and sensing matrix caused by completely perturbed observations will result in a sharp decline in the performance of parameter estimation for compressed sensing radar (CSR). A novel robust parameter estimation algorithm is proposed based on Bayesian compressed sensing (BCS). The completely perturbed sparse linear model is firstly built, and the robust target function is derived with the maximum a posteriori (MAP) of the sparse vector when the completely perturbed matrix obeys Cauchy distribution. Then the optimal solution is achieved through the alternate iteration between the sparse vector and the scale parameter. Compared with most existing recovery algorithm and their derivants, the proposed method effectively improves the robustness against the foregoing mismatch, increases the target detection probability and reduces the estimation error. The effectiveness of the proposed algorithms is demonstrated by computer simulations.