系统工程与电子技术

• 电子技术 • 上一篇    下一篇

多机无源跟踪迭代UKF算法

徐征, 曲长文, 陈俊   

  1. 海军航空工程学院电子信息工程系, 山东 烟台 264001
  • 出版日期:2014-02-26 发布日期:2010-01-03

Iterated unscented Kalman filter algorithm for multi-plane passive tracking

XU Zheng, QU Chang-wen, CHEN Jun   

  1. Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China
  • Online:2014-02-26 Published:2010-01-03

摘要:

为利用多机实现对目标的快速高精度无源跟踪,提出了一种新的迭代无味卡尔曼滤波(unscented Kalman filter,UKF)算法。所提算法利用随机变量的概率密度函数变换,求得了直接关于目标状态的似然函数,并据此利用最大似然估计迭代求解当前时刻的目标状态,推导了能达到最大似然面的迭代求解准则,将该准则与UKF算法结合得到新的迭代UKF算法。以多机只测角跟踪为例,对所提算法的性能进行仿真分析,仿真结果表明,相对于已有的迭代UKF算法,所提算法具有更好的跟踪性能,实用性强。

Abstract:

A novel iterated unscented Kalman filter (UKF) is proposed to realize fast and highprecision passive tracking using multi-plane. The proposed algorithm gets the likelihood function directly with respect to the target state by the probability density function transformation of the random variable and the state is iteratively solved using the maximum likelihood estimator based on it. The convergence criterion which can reach the maximum likelihood surface is derived and a novel iterated UKF algorithm is gotten by combining the criterion with the UKF algorithm. The multi-plane bearingonly tracking is used as an example to analyze the performance of the proposed algorithm. Simulation results indicate that the proposed algorithm has better tracking performance compared with existing iterated UKF algorithms, which indicate its good application prospect.