Journal of Systems Engineering and Electronics ›› 2009, Vol. 31 ›› Issue (10): 2489-2491,2526.

• 软件、算法与仿真 • 上一篇    下一篇

基于RBF神经网络的高斯混合近似算法

樊国创1, 戴亚平1, 闫宁2   

  1. 1. 北京理工大学自动控制系, 北京, 100081;
    2. 北京政法职业学院应用法律二系, 北京, 102600
  • 收稿日期:2008-04-11 修回日期:2008-07-01 出版日期:2009-10-20 发布日期:2010-01-03
  • 作者简介:樊国创(1977- ),男,博士研究生,主要研究方向为目标跟踪、数据融合.E-mail:gcfred@gmail.com
  • 基金资助:
    中国学位与研究生教育学会“十一五”研究项目资助课题

Gaussian mixture approximation algorithm based on radius basis function neural network

FAN Guo-chuang1, DAI Ya-ping1, YAN Ning2   

  1. 1. Dept. of Automation Control, Beijing Inst. of Technology, Beijing 100081, China;
    2. Second Dept. of Applied Law, Beijing Management Coll. of Politics and Law, Beijing 102600, China
  • Received:2008-04-11 Revised:2008-07-01 Online:2009-10-20 Published:2010-01-03

摘要: 在分析RBF神经网络基本结构的基础上,提出一种基于RBF神经网络求解非高斯概率密度近似为高斯概率密度和的方法.该方法通过选取高斯函数作为神经网络的径向基函数,提取训练好的网络参数,运用这些参数构建混合成分的函数模型.理论分析与仿真证明,与传统采用EM近似算法相比,该算法具有求解跟初值的选取无关、能避免发散、收敛快的特点.

Abstract: A algorithm based on radius basis function(RBF) neural network is presented,in which any nonlinear function can be approximated as a limited Gauss function mixture,on the basis of analysing the structure of RBF neural network.The Gauss function is selected as a radius basis function in the proposed algrithom,and the network parameters to have been trained are drawn and are used to build a mixture function.The results of theoretical analysis and simulation verify that the proposed algorithm is independent of initial values and is convergent rapidly compared with the traditional EM(expectation maximum) algorithm.

中图分类号: