| 1 |
POPOVSKI P, TRILLINGSGAARD K F, SIMEONE O, et al. 5G wireless network slicing for eMBB, URLLC, and mMTC: a communication-theoretic view[J]. IEEE Access, 2018, 6, 55765- 55779.
doi: 10.1109/ACCESS.2018.2872781
|
| 2 |
MARKOVIC I R, VUKOBRATOVIC D. Five years of 3GPP NB-IoT technology: what are the main use cases?[C]//Proc. of the 23rd International Symposium on INFOTEH- JAHORINA, 2024.
|
| 3 |
YIN J Y, MENG G D, GAN Z H, et al. Application scenarios and analysis of NB-IoT communication in substation and power internet of things[C]//Proc. of the IEEE 5th International Electrical and Energy Conference , 2022: 838−842.
|
| 4 |
BOIANO A, SPASIC M, REDONDI A E C. eMTC vs. NB-IoT: an empirical comparison of uplink performance[C]//Proc. of the IEEE 9th International Conference on Smart and Sustainable Technologies, 2024.
|
| 5 |
LI X, XU X H, HU C L. Research on 5G redcap standard and key technologies[C]//Proc. of the IEEE 4th Information Communication Technologies Conference, 2023: 6−9.
|
| 6 |
SONG P, XIONG S K, WANG Q. RedCap performance analysis and deployment strategy research[C]// Proc. of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, 2024.
|
| 7 |
SHAHAB M B, ABBAS R, SHIRVANIMOGHADDAM M, et al. Grant-free non-orthogonal multiple access for IoT: a survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22 (3): 1805- 1838.
|
| 8 |
CAO G Q, YANG B R, HAO L. Cross validation aided AMP-MMV detector for uplink grant-free NOMA[C]//Proc. of the IEEE 14th International Conference on Electronics Information and Emergency Communication, 2024.
|
| 9 |
OH S M, SHIN J S. An efficient small data transmission scheme in the 3GPP NB-IoT system[J]. IEEE Communications Letters, 2016, 21 (3): 660- 663.
|
| 10 |
HAN Z, LI H S, YIN W T. Compressive sensing for wireless networks[M]. Cambridge : Cambridge University Press, 2013.
|
| 11 |
DONOHO D L. Compressed sensing[J]. IEEE Trans. on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
| 12 |
FAN Y, PESAVENTO M. Tail-STELA for fast signal recovery via basis pursuit[C]//Proc. of the IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop, 2024.
|
| 13 |
FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (4): 586- 597.
doi: 10.1109/JSTSP.2007.910281
|
| 14 |
CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43 (1): 129- 159.
doi: 10.1137/S003614450037906X
|
| 15 |
GILBERT A C, GUHA S, INDYK P, et al. Near-optimal sparse Fourier representations via sampling[C]//Proc. of the 34th Annual ACM Symposium on Theory of Computing, 2002: 152−161.
|
| 16 |
ZHANG X X, FAN P Z, LIU J Q, et al. Bayesian learning-based multiuser detection for grant-free NOMA systems[J]. IEEE Trans. on Wireless Communications, 2022, 21 (8): 6317- 6328.
doi: 10.1109/TWC.2022.3148262
|
| 17 |
YANG B R, ZHANG X X, HAO L, et al. Improved Bayesian learning detectors for uplink grant-free MIMO-NOMA[J]. IEEE Wireless Communications Letters, 2023, 12 (12): 2243- 2247.
doi: 10.1109/LWC.2023.3317374
|
| 18 |
ZHANG X X, FAN P Z, HAO L, et al. Generalized approximate message passing based bayesian learning detectors for uplink grant-free NOMA[J]. IEEE Trans. on Vehicular Technology, 2023, 72 (11): 15057- 15061.
|
| 19 |
TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans. on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108
|
| 20 |
TROPP J A, GILBERT A C, STRAUSS M J. Simultaneous sparse approximation via greedy pursuit[C]. Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.
|
| 21 |
DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Trans. on Information Theory, 2009, 55 (5): 2230- 2249.
doi: 10.1109/TIT.2009.2016006
|
| 22 |
WANG B C, DAI L L, ZHANG Y, et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016, 20 (11): 2320- 2323.
doi: 10.1109/LCOMM.2016.2602264
|
| 23 |
GAO Y X, ZHENG J P, LI B. Bidirectional side information aided compressed sensing multiuser detection for uplink GF-NOMA [C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2022: 2148−2153.
|
| 24 |
DU Y, DONG B H, ZHU W Y, et al. Joint channel estimation and multiuser detection for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7 (4): 682- 685.
doi: 10.1109/LWC.2018.2810278
|
| 25 |
WU L T, SUN P, WANG Z B, et al. Temporal correlation enhanced multiuser detection for uplink grant-free NOMA[J]. IEEE Trans. on Mobile Computing, 2021, 22 (4): 2446- 2457.
|
| 26 |
GAO P Y, LIU Z L, XIAO P, et al. Low-complexity channel estimation and multi-user detection for uplink grant-free NOMA systems[J]. IEEE Wireless Communications Letters, 2021, 11 (2): 263- 267.
|
| 27 |
OYERINDE O O. Multiuser detector based on fused amended orthogonal matching pursuit and subspace pursuit algorithms for uplink grant-free NOMA wireless communication systems[C]//Proc. of the IEEE 91st Vehicular Technology Conference, 2020.
|
| 28 |
WU L T, SUN P, WANG Z B, et al. Joint user activity identification and channel estimation for grant-free NOMA: a spatial-temporal structure-enhanced approach[J]. IEEE Internet of Things Journal, 2021, 8 (15): 12339- 12349.
doi: 10.1109/JIOT.2021.3063476
|
| 29 |
CLAZZER F, AMRI F, GREC M. An investigation of the compressed sensing phase in unsourced multiple access[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2024.
|
| 30 |
DUARTE M F, ELDAR Y C. Structured compressed sensing: from theory to applications[J]. IEEE Trans. on Signal Processing, 2011, 59 (9): 4053- 4085.
doi: 10.1109/TSP.2011.2161982
|