系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2654-2666.doi: 10.12305/j.issn.1001-506X.2025.08.23
• 系统工程 • 上一篇
郑少秋1(), 陆凌云1(
), 张武1, 王凯1,2, 丁炎炎3, 刘凡3, 应励志1, 陈志新1,*
收稿日期:
2024-10-16
出版日期:
2025-08-25
发布日期:
2025-09-04
通讯作者:
陈志新
E-mail:zhengshaoqiu@cetc.com.cn;lulingyun987@163.com
作者简介:
郑少秋(1990—),男,研究员,博士,主要研究方向为联合作战筹划、智能指挥控制、深度强化学习基金资助:
Shaoqiu ZHENG1(), Lingyun LU1(
), Wu ZHANG1, Kai WANG1,2, Yanyan DING3, Fan LIU3, Lizhi YING1, Zhixin CHEN1,*
Received:
2024-10-16
Online:
2025-08-25
Published:
2025-09-04
Contact:
Zhixin CHEN
E-mail:zhengshaoqiu@cetc.com.cn;lulingyun987@163.com
摘要:
未来战争的战场态势瞬息万变,并向信息域和社会域拓展,目标数量庞大且关系复杂,传统的目标体系分析与选择方法难以满足需求。首先,剖析目标体系分析与选择的相关概念、任务目标、基本原则、影响因素和核心难点。然后,系统梳理六类典型方法的主要思想、计算流程和主要环节,对各方法的优缺点进行比较分析。最后,针对现有方法面临的挑战,提出基于能力的作战任务与目标动态关联、作战任务量化评估、目标关联关系仿真验证等建议,为联合作战筹划系统的发展提供参考。
中图分类号:
郑少秋, 陆凌云, 张武, 王凯, 丁炎炎, 刘凡, 应励志, 陈志新. 目标体系分析与选择研究进展[J]. 系统工程与电子技术, 2025, 47(8): 2654-2666.
Shaoqiu ZHENG, Lingyun LU, Wu ZHANG, Kai WANG, Yanyan DING, Fan LIU, Lizhi YING, Zhixin CHEN. Research progress in analysis and selection of target system[J]. Systems Engineering and Electronics, 2025, 47(8): 2654-2666.
表1
典型试验场景及目标特点"
领域 | 典型场景 | 目标特点 |
火力打击[ | 火力打击目标选择 | 目标涉及的影响因素多 |
火力打击[ | 岛屿封锁作战炮兵打击 目标选择 | 不同目标具备不同的作用 |
防御作战[ | 红方一体化防御对蓝方 威胁分析 | 各目标指数由计算公式表征 |
作战信息 中心侦察[ | 战场监听目标通信痕迹 分析信息中心 | 不同目标间的关系是 通信次数 |
海上反击[ | 红蓝对抗,选择升级重要 装备,提升对抗能力 | 不同目标具有不同的 能力指标 |
攻防对抗[ | 数字化装甲合成营对抗 | 不同目标具备不同 种类功能 |
网络化协 同作战[ | 确定目标打击顺序和 协同方案 | 选择的目标为不同的 打击顺序 |
攻防对抗[ | 双方攻防对抗效能分析 | 分析体系作战效能选择 高效损伤方案 |
体系破击[ | 联合火力打击目标排序 | 各节点有属性权重 |
表2
目标和影响因素对应方法"
类型 | 目标/个 | 影响因素 | 筛选要求 | 方法 | |||
组成 | 规模/个 | 属性 | 规模/个 | ||||
联合火力打击 目标体系[ | 打击目标 | 8 | 树状三层影响因素体系 | 21 | 到最理想点的距离小则价值优 | 基于经验价值综合的 目标选择方法 | |
网络中心战下常 规导弹体系[ | 导弹打击目标 | 12 | 依据上级意图完成任务期望 的效果的指标 | 5 | 目标链价值大的目标 | 基于效果的目标 选择方法 | |
战术数据链[ | 通信节点 | 14 | 网络体系描述指标 | 4 | 体系毁伤效果明显的节点 | 基于复杂网络分析的 目标选择方法 | |
编队对抗体系[ | 红蓝方目标节点 | 14 | 毁伤概率 | 1 | 红方节点受损率之和最小 | 基于解析优化的 目标选择方法 | |
装备对抗体系[ | 侦察、打击、指控装备节点 | 8 | 两级能力指标 | 10 | 去除某装备后,体系作战环数和 作战能力变化率最大的目标 | 基于复杂网络分析的 目标选择方法 | |
网络化协 同作战[ | 指控、侦察预警、打击、 防空反导节点 | 四大系统 对应的较 多目标 | 6个个体能力指标和 3个整体能力指标 | 21 | 不同数量目标的打击下 对体系指标的影响大的方案 | 基于复杂网络分析的 目标选择方法 | |
复杂作战体系[ | 指控功能节点 | 50 | 网络体系描述指标 | 4 | 节点重要度排序 | 基于复杂网络分析的 目标选择方法 | |
防御系统[ | 存在先验概率和成本的目标 | 15 | 关于打击决策、运行状态等概率 | — | 基于影响网络选择压制效果和 付出成本合适的目标 | 基于概率网络的目标 选择方法 | |
防御体系[ | 巡航弹和作战飞机等目标 | 54 | 目标价值、攻击次数组成的 惩罚指标 | 2 | 红方节点受损最小时使用 最小的资源 | 基于深度强化学习的 目标选择方法 |
表4
典型目标选择方法对比分析"
方法名称 | 优点 | 缺点 | 适用范围 |
基于经验价值综合的目标选择方法 | 目标选择结果较客观、可信 | 目标间关联性考虑不足 | 目标间关联性弱的场景 |
基于效果的目标选择方法 | 可得到明确的目标排序 | 红蓝博弈考虑不足 | 多批次多目标饱和攻击等复杂场景 |
基于解析优化的目标选择方法 | 简单场景能快速得到解析解 | 多目标、交互复杂的场景建模困难 | 小规模、交互关系简单的场景 |
基于复杂网络分析的目标选择方法 | 可分析目标在体系中的重要程度 | 计算复杂度随目标数目增加呈非线性增长 | 目标数少、作战节奏慢的简单场景 |
基于概率网络的目标选择方法 | 可处理目标间不确定性影响关系 | 需要确定大量条件概率 | 目标间关联性低的场景 |
基于深度强化学习的目标选择方法 | 可快速找出目标节点 | 模型构建复杂,当目标数量大时训练难度高 | 复杂强对抗动态作战场景 |
1 | 武海涛, 刘洋, 屈丹, 等. 目标选择理论与方法研究综述[J]. 军事运筹与系统工程, 2020, 34 (4): 75- 80. |
WU H T, LIU Y, QU D, et al. A review of theory and methods of target selection[J]. Military Operation Research and System Engineering, 2020, 34 (4): 75- 80. | |
2 | Joint Chiefs of Staff. Joint targeting: joint publication 3-60[EB/OL]. [2024-10-16]. https: //www.justsecurity.org/wp-content/uploads/2015/06/Joint_Chiefs-Joint_Targeting_20130131.pdf. |
3 | 雷霆, 朱承. 目标体系描述与火力分配方法研究[J]. 军事运筹与系统工程, 2012, 26 (1): 67- 72. |
LEI T, ZHU C. Research on target system description and fire distribution method[J]. Military Operation Research and System Engineering, 2012, 26 (1): 67- 72. | |
4 |
计宏亮, 安达, 张琳. 美军赛博空间作战战略、理论与技术能力体系研究[J]. 中国电子科学研究院学报, 2016, 11 (2): 144- 150.
doi: 10.3969/j.issn.1673-5692.2016.02.005 |
JI H L, AN D, ZHANG L. Study on the capability system of US cyber power[J]. Journal of China Academy of Electronics and Information Technology, 2016, 11 (2): 144- 150.
doi: 10.3969/j.issn.1673-5692.2016.02.005 |
|
5 | 蔡向阳, 姜博轩, 李男. 联合作战打击目标选择[J]. 四川兵工学报, 2009, 30 (8): 75- 77. |
CAI X Y, JIANG B X, LI N. Target selection for joint operations[J]. Journal of Ordnance Equipment Engineering, 2009, 30 (8): 75- 77. | |
6 | 刘晓静, 李宏伟, 张奔. 联合战役目标选择理论与方法研究[J]. 测绘学院学报, 2000, 17 (4): 284- 288. |
LIU X J, LI H W, ZHANG B. The theory and method of the selective objective of combined campaign[J]. Journal of Institute of Surveying and Mapping, 2000, 17 (4): 284- 288. | |
7 | 邱成龙, 沈生. 目标选择理论方法[J]. 火力与指挥控制, 2004, 29 (3): 7- 9. |
QIU C L, SHEN S. The model and methods of target selection[J]. Fire Control & Command Control, 2004, 29 (3): 7- 9. | |
8 | 李剑雄, 曾庆华. 联合火力打击的目标选择[J]. 国防大学学报, 2005, (6): 39- 41. |
LI J X, ZENG Q H. Target selection for joint fire strike[J]. Journal of National University of Defense Technology, 2005, (6): 39- 41. | |
9 | 于淼, 岳庆来, 杜正军, 等. 基于重心理论的作战筹划的优劣分析[J]. 装备指挥技术学院学报, 2011, 22(5): 24−28. |
YU M, YUE Q L, DU Z J, et al. Analysis of advantage and disadvantage of the operational design based on gravity theory[J]. Journal of the Academy of Equipment Command & Technology, 2011, 22(5): 24−28. | |
10 | 张国辉, 杨征, 杜正军, 等. 基于禁忌搜索的作战重心分析与选择方法[J]. 火力与指挥控制, 2021, 46(1): 94−102. |
ZHANG G H, YANG Z, DU Z J, et al. Analysis and selection method of operational center of gravity based on tabu search[J]. Fire Control & Command Control, 2021, 46(1): 94−102. | |
11 | 付国宾, 谭海涛, 朱巍, 等. 基于效果的网络中心战模型研究[J]. 火力与指挥控制, 2009, 34(6): 1−3. |
FU G B, TAN H T, ZHU W, et al. Research on the model of task procedure of network centric warfare based on effects[J]. Fire Control & Command Control, 2009, 34(6): 1−3. | |
12 | 王寿鹏, 刘良, 刘伟. 美军联合作战目标工作研究及启示[J]. 舰船电子工程, 2021, 41(2): 5−8. |
WANG S P, LIU L, LIU W. Research and enlightenment of US military joint operations target work[J]. Ship Electronic Engineering, 2021, 41(2): 5−8. | |
13 | DEPARTMENT of the ARMY. ATP3-60: targeting[R]. Washington D. C. : U.S. Government Publishing Office, 2015. |
14 | 高天运, 马兰, 齐建成. 外军高超声速武器作战及其目标杀伤链构建分析[J]. 战术导弹技术, 2024, (3): 136- 147. |
GAO T Y, MA L, QI J C. Analysis of combat forms and targeting kill chain of foreign hypersonic weapons[J]. Tactical Missile Technology, 2024, (3): 136- 147. | |
15 | 邓志宏. 常规导弹目标选择中目标价值分析方法研究[D]. 长沙: 国防科学技术大学, 2009. |
DENG Z H. Research on method of target value analysis for targeting of conventional missile operation[D]. Changsha: National University of Defense Technology, 2009. | |
16 |
王三喜, 杨云松, 杜丹. 作战目标价值排序模型研究[J]. 中国电子科学研究院学报, 2015, 10 (2): 195- 198,203.
doi: 10.3969/j.issn.1673-5692.2015.02.015 |
WANG S X, YANG Y S, MU D. Research on the value ranking model of combat objectives[J]. Journal of CAEIT, 2015, 10 (2): 195- 198,203.
doi: 10.3969/j.issn.1673-5692.2015.02.015 |
|
17 |
关键, 袁诗龙. 岛屿封锁作战炮兵目标价值排序的优化模型[J]. 火力与指挥控制, 2009, 34 (3): 136- 138.
doi: 10.3969/j.issn.1002-0640.2009.03.038 |
GUAN J, YUAN S L. The optimized model of artillery target value sequencing in the island blockade combat[J]. Fire Control & Command Control, 2009, 34 (3): 136- 138.
doi: 10.3969/j.issn.1002-0640.2009.03.038 |
|
18 | 宋颖, 罗京, 罗江. 目标一体化防空防御体系威胁分析模型研究[C]// 第八届中国指挥控制大会, 2020: 574−577. |
SONG Y, LUO J, LUO J. Research on threat analysis model of integrated cavitation defense system[C]// Proc. of the 8th China Conference on Command and Control, 2020: 574−577. | |
19 |
刘琼, 艾云平, 王卓柱, 等. 多层次灰色聚类决策对目标价值排序的应用[J]. 火力与指挥控制, 2008, 33 (5): 79- 81.
doi: 10.3969/j.issn.1002-0640.2008.05.023 |
LIU Q, AI Y P, WANG Z Z, et al. Application of multi-level grey clustering decision to target value ranking[J]. Fire Control & Command Control, 2008, 33 (5): 79- 81.
doi: 10.3969/j.issn.1002-0640.2008.05.023 |
|
20 |
单恒, 陈庆龙. 合成部队进攻战斗打击目标优选决策[J]. 舰船电子工程, 2021, 41 (8): 16- 19.
doi: 10.3969/j.issn.1672-9730.2021.08.005 |
SHAN H, CHEN Q L. The optimal decision of attacking target in the synthetic force[J]. Ship Electronic Engineering, 2021, 41 (8): 16- 19.
doi: 10.3969/j.issn.1672-9730.2021.08.005 |
|
21 | 杜保亭, 张鹏, 徐炜翔. 基于模糊聚类分析在炮兵战场目标打击排序中的应用[J]. 火力与指挥控制, 2009, 34 (S1): 21- 22. |
DU B T, ZHANG P, XU W X. Application of fuzzy clustering analysis in artillery battlefield target strike sequencing[J]. Fire Control & Command Control, 2009, 34 (S1): 21- 22. | |
22 | 陈培彬, 赵毅, 郑华利. 基于熵法的炮兵战场目标价值分析[J]. 火力与指挥控制, 2004, 29 (5): 85- 87. |
CHEN P B, ZHAO Y, ZHENG H L. Analysis of artillery battlefield target value based on entropy method[J]. Fire Control & Command Control, 2004, 29 (5): 85- 87. | |
23 |
曹士信, 张若庚, 金鑫. 基于组合熵权的联合作战目标选择模型研究[J]. 指挥控制与仿真, 2008, 12 (6): 16- 17.
doi: 10.3969/j.issn.1673-3819.2008.06.004 |
CAO S X, ZHANG R G, JIN X. Research on target selection model of joint operations based on combined entropy weight[J]. Command Control & Simulation, 2008, 12 (6): 16- 17.
doi: 10.3969/j.issn.1673-3819.2008.06.004 |
|
24 |
张杨, 袁宏伟. 复杂电磁环境下炮兵火力打击目标价值分析[J]. 舰船电子工程, 2009, 29 (2): 172- 175.
doi: 10.3969/j.issn.1627-9730.2009.02.051 |
ZHANG Y, YUAN H W. Value analysis of artillery fire strike target in complex electromagnetic environment[J]. Ship Electronic Engineering, 2009, 29 (2): 172- 175.
doi: 10.3969/j.issn.1627-9730.2009.02.051 |
|
25 |
韩学平, 芮筱亭, 赵革. 多决策目标排序的层次分析与灰色关联法[J]. 火力与指挥控制, 2009, 34 (9): 80- 83.
doi: 10.3969/j.issn.1002-0640.2009.09.022 |
HAN X P, RUI X T, ZHAO G. AHP and grey correlation method for multi-decision objective sequencing[J]. Fire Control & Command Control, 2009, 34 (9): 80- 83.
doi: 10.3969/j.issn.1002-0640.2009.09.022 |
|
26 |
邓昌, 汪民乐, 李晓光. 基于效果的常规导弹打击目标选择决策方法研究[J]. 现代防御技术, 2009, 37 (4): 1- 6,42.
doi: 10.3969/j.issn.1009-086X.2009.04.001 |
DENG C, WANG M L, LI X G. Research on the decision method of target selection of conventional missile based on effect[J]. Modern Defence Technology, 2009, 37 (4): 1- 6,42.
doi: 10.3969/j.issn.1009-086X.2009.04.001 |
|
27 | 姚泽清, 张晨光. 一种基于体系打击效果的战时目标选择方法[J]. 军事运筹与系统工程, 2014, 28 (4): 32- 38. |
YAO Z Q, ZHANG C G. A wartime target selection method based on system strike effect[J]. Military Operation Research and System Engineering, 2014, 28 (4): 32- 38. | |
28 | 薛晓光, 周旭, 卢连成, 等. 目标体系毁伤分析及效能评估方法[C]// 第三届体系工程学术会议, 2021: 199−203. |
XUE X G, ZHOU X, LU L C, et al. Damage analysis and effectiveness evaluation method of target system[C]// Proc. of the 3rd Academic Conference on System Engineering, 2021: 199−203. | |
29 |
翁弘, 任毅, 孙进平. 一种基于ISAR的目标打击效果评估方法[J]. 遥测遥控, 2008, 29 (3): 54- 59.
doi: 10.3969/j.issn.2095-1000.2008.03.012 |
WENG H, REN Y, SUN J P. An ISAR-based evaluation method of target strike effect[J]. Journal of Telemetry, Tracking and Conmand, 2008, 29 (3): 54- 59.
doi: 10.3969/j.issn.2095-1000.2008.03.012 |
|
30 |
袁震宇, 谢春思. 基于故障树的系统目标打击决策模型研究[J]. 舰船电子工程, 2010, 30 (7): 52- 55.
doi: 10.3969/j.issn.1627-9730.2010.07.016 |
YUAN Z Y, XIE C S. Research on system target strike decision model based on fault tree[J]. Ship Electronic Engineering, 2010, 30 (7): 52- 55.
doi: 10.3969/j.issn.1627-9730.2010.07.016 |
|
31 |
杜正军, 张国辉, 李庆震, 等. 作战体系效能分析及关键目标选择模型研究[J]. 火力与指挥控制, 2022, 47 (1): 125- 129.
doi: 10.3969/j.issn.1002-0640.2022.01.021 |
DU Z J, ZHANG G H, LI Q Z, et al. Research on effectiveness analysis and key target selection model of combat system[J]. Fire Control & Command Control, 2022, 47 (1): 125- 129.
doi: 10.3969/j.issn.1002-0640.2022.01.021 |
|
32 | KOLESZAR G E, BEXFIELD J N, MIERCORT F A. A description of the weapon optimization and resource requirements model[R]. Alexandria: Institute for Defense Analyses, 1999. |
33 | CASTRO D. Optimization models for allocation of air strike assets with persistence[D]. Monterey: Naval Post Graduate School, 2002. |
34 | 苏英振, 徐洸. 基于目标网的空中突击兵力使用方案的优化方法[J]. 系统工程理论与实践, 2002, 22 (4): 97- 101. |
SU Y Z, XU G. Optimization method of air assault force use scheme based on target network[J]. System Engineering Theory and Practice, 2002, 22 (4): 97- 101. | |
35 | LI V C , CURRY G L, BOYD E A. Towards the real time solution of strike force asset allocation problems[J]. Computers & Operations Research, 2004, 31(2): 273−291. |
36 | JOHNSON A, SMITH B. Optimal target assignment using multi-objective dynamic programming[J]. Journal of Optimization Theory and Applications, 2024, 180 (2): 345- 368. |
37 |
袁梅, 凌明祥, 曾庆双. 基于信息素递减的蚁群算法的WTA问题求解[J]. 计算机仿真, 2008, 25 (2): 23- 25.
doi: 10.3969/j.issn.1006-9348.2008.02.007 |
YUAN M, LING M X, ZENG Q S. An antcolony algorithm based on pherom one declining for solving the WTA problem[J]. Computer Simulation, 2008, 25 (2): 23- 25.
doi: 10.3969/j.issn.1006-9348.2008.02.007 |
|
38 |
LI J R, WU G H, WANG L. A comprehensive survey of weapon target assignment problem: model, algorithm, and application[J]. Engineering Applications of Artificial Intelligence, 2024, 137, 109212.
doi: 10.1016/j.engappai.2024.109212 |
39 |
ZHAI S B, LI G W, WU G, et al. Cooperative task allocation for multi heterogeneous aerial vehicles using particle swarm optimization algorithm and entropy weight method[J]. Applied Soft Computing, 2023, 148, 110918.
doi: 10.1016/j.asoc.2023.110918 |
40 | XING H X, XING Q H. An air defense weapon target assignment method based on multi-objective artificial bee colony algorithm[J]. Computers, Materials and Continua, 2023, 76 (3): 2685- 2705. |
41 |
BAI Z Z, ZHOU H Y, SHI J M, et al. A hybrid multi-objective evolutionary algorithm with high solving efficiency for UAV defense programming[J]. Swarm and Evolutionary Computation, 2024, 87, 101572.
doi: 10.1016/j.swevo.2024.101572 |
42 |
XIE T, HUANG Y J, CHEN W F. Multi-dimensional assignment model and its algorithm for multi-features decision-making problems[J]. Expert Systems with Applications, 2025, 270, 126369.
doi: 10.1016/j.eswa.2024.126369 |
43 |
秦前付, 曹存根, 徐洸. 基于图论的作战计划军事效果评估[J]. 计算机科学, 2005, 32 (7): 148- 151.
doi: 10.3969/j.issn.1002-137X.2005.07.047 |
QIN Q F, CAO C G, XU G. Military effect evaluation of combat plan based on network theory[J]. Computer Science, 2005, 32 (7): 148- 151.
doi: 10.3969/j.issn.1002-137X.2005.07.047 |
|
44 | 朱承, 江小平, 肖开明, 等. 基于动态多重网络的目标体系建模与分析[J]. 指挥与控制学报, 2016, 2 (4): 296- 301. |
ZHU C, JIANG X P, XIAO K M, et al. Modeling and analysis of target system based on dynamic multiple network theory[J]. Journal of Command and Control, 2016, 2 (4): 296- 301. | |
45 |
RIANLDI S M, PEERENBOOM J P, KELLY T K. Identifying, under- standing, and analyzing critical infrastructure interdependencies[J]. IEEE Control Systems Magazine, 2001, 21 (6): 11- 25.
doi: 10.1109/37.969131 |
46 | WALLACE W A, MENDONCA D, LEE E E, et al. Managing disruptions to critical interdependent infrastructures in the context of the 2001 World Trade Center attack[EB/OL]. [2024-09-16]. https://mitchjrpi.github.io/papers/Wallace_et_al_final.pdf. |
47 | 李际超. 基于作战网络模型的装备体系贡献度研究[D]. 长沙: 国防科学技术大学, 2015. |
LI J C. Research on equipment contribution of weapon system-of-systems based on combat network model[D]. Changsha: National University of Defense Technology, 2015. | |
48 | 蔡凌峰, 刘冠邦, 陈怡超. 目标体系分析方法[J]. 指挥信息系统与技术, 2021, 12 (2): 38- 43,54. |
CAI L F, LIU G B, CHEN Y C. Analysis method for target system[J]. Command Information System and Technology, 2021, 12 (2): 38- 43,54. | |
49 |
杨国利, 黄金才, 张维明. 基于FINC模型的作战体系定量评估方法[J]. 计算机工程, 2011, 37 (10): 287- 290.
doi: 10.3969/j.issn.1000-3428.2011.10.099 |
YANG G L, HUANG J C, ZHANG W M. Combat system quantitative assessment method nased on FINC model[J]. Computer Engineering, 2011, 37 (10): 287- 290.
doi: 10.3969/j.issn.1000-3428.2011.10.099 |
|
50 | 赵玉丰, 赵倩. 一种对抗条件下的体系作战效能分析方法[J]. 军事运筹与系统工程, 2017, 31 (2): 24- 30. |
ZHAO Y F, ZHAO Q. Analysis method of system of systems operational effectiveness under the condition of countermeasures[J]. Military Operations Research and Systems Engineering, 2017, 31 (2): 24- 30. | |
51 |
杨国利, 邹瑞涛, 任步春, 等. 网络化作战体系中的关键目标选择研究[J]. 指挥与控制学报, 2018, 4 (4): 312- 318.
doi: 10.3969/j.issn.2096-0204.2018.04.0312 |
YANG G L, ZOU R T, REN B C, et al. Key targets selection in networked operation system of systems[J]. Journal of Command and Control, 2018, 4 (4): 312- 318.
doi: 10.3969/j.issn.2096-0204.2018.04.0312 |
|
52 | 张臻, 姜枫, 李彭伟. 基于重心分析的联合作战计划制定方法[J]. 指挥信息系统与技术, 2016, 7 (3): 38- 43. |
ZHANG Z, JIANG F, LI P W. Method for joint operational design based on gravity analysis[J]. Command Information System and Technology, 2016, 7 (3): 38- 43. | |
53 |
张睿, 梁海民, 赵士夯. 基于体系重心算法的火力打击目标排序方法[J]. 指挥控制与仿真, 2019, 41 (2): 115- 120.
doi: 10.3969/j.issn.1673-3819.2019.02.022 |
ZHANG R, LIANG H M, ZHAO S H. Joint firepower target choice method based on system gravity algorithm[J]. Command Control & Simulation, 2019, 41 (2): 115- 120.
doi: 10.3969/j.issn.1673-3819.2019.02.022 |
|
54 | 赵丹玲, 谭跃进, 李际超, 等. 基于作战环的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2017, 39 (10): 2239- 2247. |
ZHAO D L, TAN Y J, LI J C, et al. Armament system of system contribution evaluation based on operation loop[J]. Systems Engineering and Electronics, 2017, 39 (10): 2239- 2247. | |
55 |
胡钢, 卢志宇, 王乐萌, 等. 基于复杂网络多阶邻域贡献度的节点重要性序结构辨识[J]. 电子学报, 2023, 51 (7): 1956- 1963.
doi: 10.12263/DZXB.20221109 |
HU G, LU Z Y, WANG L M, et al. Identification of node importance order structure based on multi-order neighborhood contribution of complex network[J]. Acta Electronica Sinca, 2023, 51 (7): 1956- 1963.
doi: 10.12263/DZXB.20221109 |
|
56 |
RUAN Y R, LIU S Z, TANG J, et al. GLC: a dual-perspective approach for identifying influential nodes in complex networks[J]. Expert Systems with Applications, 2025, 268, 126292.
doi: 10.1016/j.eswa.2024.126292 |
57 |
WILLIE K, YEZEKAEL H, GABRIEL D, et al. A novel centrality measure for analyzing lateral movement in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2025, 658, 130255.
doi: 10.1016/j.physa.2024.130255 |
58 | SHEN Z L, JIAO Y H, WEI Y K, et al. Efficient hybrid PageRank centrality computation for multilayer networks[J]. Chaos, Solitons & Fractals, 2025, 192: 116018. |
59 | XU Q, SUN L Z, BU C J. The two-steps eigenvector centrality in complex networks[J]. Chaos, Solitons & Fractals, 2023, 173: 113753. |
60 | WANG S, DU Y, DENG Y. A new measure of identifying influential nodes: efficiency centrality[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 47 (6): 151- 163. |
61 |
李尔玉, 龚建兴, 黄健, 等. 基于功能链的作战体系复杂网络节点重要性评价方法[J]. 指挥与控制学报, 2018, 4 (1): 42- 49.
doi: 10.3969/j.issn.2096-0204.2018.01.0042 |
LI E Y, GONG J X, HUANG J, et al. Node importance analysis of complex networks for combat systems based on function chain[J]. Journal of Command and Control, 2018, 4 (1): 42- 49.
doi: 10.3969/j.issn.2096-0204.2018.01.0042 |
|
62 |
贺小亮, 毕义明. 基于贝叶斯网络的目标选择方案设计[J]. 现代防御技术, 2014, 42 (3): 6- 11.
doi: 10.3969/j.issn.1009-086x.2014.03.002 |
HE X L, BI Y M. Target selection scheme design based on Bayesian networks[J]. Modern Defence Technology, 2014, 42 (3): 6- 11.
doi: 10.3969/j.issn.1009-086x.2014.03.002 |
|
63 | 朱延广, 朱一凡. 基于影响网络的联合火力打击目标选择方法研究[J]. 军事运筹与系统工程, 2010, 24 (3): 64- 69. |
ZHU Y G, ZHU Y F. Research on target selection method of joint fire strike based on influence network[J]. Military Operations Research and Systems Engineering, 2010, 24 (3): 64- 69. | |
64 |
FAN C J, ZENG L, SUN Y Z, et al. Finding key players in complex networks through deep reinforcement learning[J]. Nature Machine Intelligence, 2020, 2 (6): 317- 324.
doi: 10.1038/s42256-020-0177-2 |
65 | LI T D, WANG G, FU Q, et al. An intelligent algorithm for solving weapon-target assignment problem: DDPG-DNPE algorithm[J]. Computers, Materials and Continua, 2023, 76 (3): 3499- 3522. |
66 | 金哲豪, 刘安东, 俞立. 基于GPR和深度强化学习的分层人机协作控制[J]. 自动化学报, 2022, 48 (9): 2352- 2360. |
JIN Z H, LIU A D, YU L. Hierarchical human-robot cooperative control based on GPR and DRL[J]. Acta Automatica Sinica, 2022, 48 (9): 2352- 2360. | |
67 | 刘家义, 王刚, 付强, 等. 基于分配策略优化算法的智能防空任务分配[J]. 系统仿真学报, 2023, 35 (8): 1705- 1716. |
LIU J Y, WANG G, FU Q, et al. Intelligent air defense task assignment based on assignment strategy optimization algorithm[J]. Journal of System Simulation, 2023, 35 (8): 1705- 1716. |
[1] | 高泽伦, 郑少秋, 梁汝鹏, 黄炎焱. 超网络体系作战下的打击目标优选模型[J]. 系统工程与电子技术, 2024, 46(1): 182-189. |
[2] | 毛琼, 李小民, 王正军. 基于规则的无人机编队队形构建与重构控制方法[J]. 系统工程与电子技术, 2019, 41(5): 1118-1126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||