系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1880-1892.doi: 10.12305/j.issn.1001-506X.2025.06.16
陈肖楠, 王奕首, 卿新林
收稿日期:
2024-04-24
出版日期:
2025-06-25
发布日期:
2025-07-09
通讯作者:
卿新林
作者简介:
陈肖楠(1996—), 男, 博士研究生, 主要研究方向为航空发动机气路故障诊断基金资助:
Xiaonan CHEN, Yishou WANG, Xinlin QING
Received:
2024-04-24
Online:
2025-06-25
Published:
2025-07-09
Contact:
Xinlin QING
摘要:
发展基于气路的航空发动机健康管理技术, 对于提高发动机安全和降低维修成本具有重要意义。首先介绍基于气路的航空发动机健康管理技术发展的总体概况。其次, 以模型驱动、数据驱动和混合驱动分类方式, 系统总结气路故障诊断方法的研究现状, 并介绍基于数模混合驱动的故障诊断方法。同时,综述航空发动机建模方法、航空发动机传感器故障诊断方法和航空发动机气路性能预测技术, 并讨论这些方法的特点、优势及不足。最后,总结航空发动机气路故障诊断技术的发展趋势和所面临的挑战。混合驱动方法在提升气路故障诊断精度、泛化性以及工程适用性方面展现出显著潜力,为复杂工况下的健康管理提供了新的发展方向。
中图分类号:
陈肖楠, 王奕首, 卿新林. 基于混合驱动的航空发动机气路故障诊断技术综述[J]. 系统工程与电子技术, 2025, 47(6): 1880-1892.
Xiaonan CHEN, Yishou WANG, Xinlin QING. Review of aero engine gas path fault diagnostics technology based on hybrid-driven method[J]. Systems Engineering and Electronics, 2025, 47(6): 1880-1892.
表1
基于模型发动机气路诊断方法的对比"
方法 | 优势 | 不足 |
线性气路分析法 | 诊断速度快, 适用于小偏差故障 | 精确的ICM构建难度大; 没有考虑噪声和误差的影响 |
非线性气路分析法 | 诊断速度快, 相较于线性气路分析的诊断精度更高 | 精确的ICM构建难度大; 没有考虑噪声和误差的影响 |
加权最小二乘法 | 对含噪声和误差小偏差的诊断效果较好 | 每个发动机或测试单元都需要一个单独的基线值 |
卡尔曼滤波法 | 诊断速度快, 适用于线性问题的故障诊断 | 非线性问题的诊断精度较差; 卡尔曼滤波器更倾向于将故障发生的原因归结于多个部件 |
粒子滤波法 | 粒子滤波技术在非线性、非高斯系统中的应用具有优越性 | 算法复杂度高, 计算速度较慢 |
79 |
GANGULI R . Application of fuzzy logic for fault isolation of jet engines[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125 (3): 617- 623.
doi: 10.1115/1.1470481 |
80 | MARINAI L , SINGH R . A fuzzy logic approach to gas path diagnostics in aero-engines[M]. London: Springer, 2006. |
81 |
MONTAZERI-GH M , YAZDANI S . Application of interval type-2 fuzzy logic systems to gas turbine fault diagnosis[J]. Applied Soft Computing, 2020, 96, 106703.
doi: 10.1016/j.asoc.2020.106703 |
82 | MA S , WU Y F , ZHENG H , et al. Application of fuzzy inference system in gas turbine engine fault diagnosis against mea-surement uncertainties[J]. Chinese Journal of Mechanical Engineering, 2025, 38 (2): 1- 22. |
83 | LEMMA T A . A hybrid appro ach for power pl ant fault diag nostics[M]. Switzerland: Springer International Publishing, 2018. |
84 |
FENTAYE A D , GILANI S I U . Performance-based fault diagnosis of a gas turbine engine using an integrated support vector machine and artificial neural network method[J]. Procee-dings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233 (6): 786- 802.
doi: 10.1177/0957650918812510 |
85 |
HUANG Y F , TAO J , SUN G , et al. A novel digital twin approach based on deep multimodal information fusion for aero-engine fault diagnosis[J]. Energy, 2023, 270, 126894.
doi: 10.1016/j.energy.2023.126894 |
86 | LIAO Z B , ZHAN K Y , ZHAO H , et al. Addressing class-imbalanced learning in real-time aero-engine gas-path fault diagnosis via feature filtering and mapping[J]. Reliability Engineering & System Safety, 2024, 249, 110189. |
87 |
CHENG K R , ZHANG K Y , WANG Y Z , et al. Research on gas turbine health assessment method based on physical prior knowledge and spatial-temporal graph neural network[J]. Applied Energy, 2024, 367, 123419.
doi: 10.1016/j.apenergy.2024.123419 |
88 |
ZHANG J K , WANG Z T , LI S Y , et al. A digital twin approach for gas turbine performance based on deep multi-model fusion[J]. Applied Thermal Engineering, 2024, 246, 122954.
doi: 10.1016/j.applthermaleng.2024.122954 |
89 |
ZEDDA M , SINGH R . Gas turbine engine and sensor fault diagnosis using optimization techniques[J]. Journal of Propulsion and Power, 2002, 18 (5): 1019- 1025.
doi: 10.2514/2.6050 |
90 |
SAMPATH S , OGAJI S , SINGH R , et al. Engine-fault diagnostics: an optimization procedure[J]. Applied Energy, 2002, 73 (1): 47- 70.
doi: 10.1016/S0306-2619(02)00051-X |
91 | GATTO E, LI Y G, PILIDIS P. Gas turbine off-design performance adaptation using a genetic algorithm[C]//Proc. of the Turbo Expo: Power for Land, Sea, and Air, 2006. |
92 |
LI Y G , GHAFIR M , WANG L , et al. Nonlinear multiple points gas turbine off-design performance adaptation using a genetic algorithm[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133 (7): 071701.
doi: 10.1115/1.4002620 |
93 |
LI Y G , ABDUL G M F , WANG L , et al. Improved multiple point nonlinear genetic algorithm-based performance adaptation using least square method[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134 (3): 031701.
doi: 10.1115/1.4004395 |
94 |
KONG C , KANG M , PARK G . Study on condition monitoring of 2-spool turbofan engine using non-linear GPA (gas path analysis) method and genetic algorithms[J]. Journal of the Korean Society of Propulsion Engineers, 2013, 17 (2): 71- 83.
doi: 10.6108/KSPE.2013.17.2.071 |
95 | TAKAHISA K, SIMON D. A hybrid neural network-genetic algorithm technique for aircraft engine performance diagnos-tics[C]//Proc. of the 37th Joint Propulsion Conference, 2001. |
96 | PALADE V , PATTON R J , UPPAL F J , et al. Fault diagnosis of an industrial gas turbine using neuro-fuzzy methods[J]. IFAC Proceedings Volumes, 2002, 35 (1): 471- 476. |
97 |
WANG Y Z , CHENG K R , LIU F , et al. Study of the fault diagnosis method for gas turbine sensors based on inter-parameter coupling information[J]. Measurement Science and Technology, 2024, 35 (4): 045103.
doi: 10.1088/1361-6501/ad1914 |
98 |
DEV N , KUMAR R , SAHA RK , et al. Performance evaluation methodology for gas turbine power plants using graph theory and combinatorics[J]. International Journal of Hydrogen Energy, 2024, 57, 1286- 1301.
doi: 10.1016/j.ijhydene.2024.01.064 |
99 |
IRANI F N , SOLEIMANI M , YADEGAR M , et al. Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator[J]. Applied Energy, 2024, 365, 123256.
doi: 10.1016/j.apenergy.2024.123256 |
100 |
ZHONG S , FU S , LIN L . A novel gas turbine fault diagnosis method based on transfer learning with CNN[J]. Measurement, 2019, 137, 435- 453.
doi: 10.1016/j.measurement.2019.01.022 |
1 | ULIZAR I, AZKOITIA I, MINGUEZ B. Aircraft engine advanced health management: the power of the foresee[C]//Proc. of the 8th European Workshop on Structural Health Monitoring, 2016. |
2 | MARTIJN V. Gas path analysis on the GEnx-1B at KLM engine services[D]. Delft: Delft University of Technology, 2018. |
3 |
VOLPONI A J . Gas turbine engine health management: past, present, and future trends[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136 (5): 051201.
doi: 10.1115/1.4026126 |
4 |
TAHAN M , TSOUTSANIS E , MUHAMMAD M , et al. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review[J]. Applied Energy, 2017, 198, 122- 144.
doi: 10.1016/j.apenergy.2017.04.048 |
5 |
HANACHI H , MECHEFSKE C , LIU J , et al. Performance-based gas turbine health monitoring, diagnostics, and prognostics: a survey[J]. IEEE Trans.on Reliability, 2018, 67 (3): 1340- 1363.
doi: 10.1109/TR.2018.2822702 |
6 | YILDIRIM M T , KURT B . Aircraft gas turbine engine health monitoring system by real flight data[J]. International Journal of Aerospace Engineering, 2018, 2018, 9570873. |
7 | RATH N , MISHRA R K , KUSHARI A . Aero engine health monitoring, diagnostics and prognostics for condition-based maintenance: an overview[J]. International Journal of Turbo & Jet-Engines, 2022, 40 (1): 279- 292. |
8 | 黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52 (4): 507- 522. |
HUANG J Q , WANG Q H , LU F . Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52 (4): 507- 522. | |
9 | 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状, 挑战与机遇: 气路, 机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43 (9): 9- 41. |
CAO M , HUANG J Q , ZHOU J , et al. Current status, cha-llenges and opportunities of civil aeroengine diagnostics & health management: diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (9): 9- 41. | |
101 |
TANG S X , TANG H L , CHEN M . Transfer-learning based gas path analysis method for gas turbines[J]. Applied Thermal Engineering, 2019, 155, 1- 13.
doi: 10.1016/j.applthermaleng.2019.03.156 |
102 |
YANG X S , BAI M L , LIU J F , et al. Gas path fault diagnosis for gas turbine group based on deep transfer learning[J]. Measurement, 2021, 181, 109631.
doi: 10.1016/j.measurement.2021.109631 |
103 |
LI B , ZHAO Y P , CHEN Y B . Learning transfer feature representations for gas path fault diagnosis across gas turbine fleet[J]. Engineering Applications of Artificial Intelligence, 2022, 111, 104733.
doi: 10.1016/j.engappai.2022.104733 |
104 |
ZHAO Y P , CHEN Y B . Extreme learning machine-based transfer learning for aero engine fault diagnosis[J]. Aerospace Science and Technology, 2022, 121, 107311.
doi: 10.1016/j.ast.2021.107311 |
105 |
ZHAO Y P , JIN H J , LIU H . Gas path fault diagnosis of turboshaft engine based on novel transfer learning methods[J]. Journal of Dynamic Systems, Measurement, and Control, 2024, 146, 031010.
doi: 10.1115/1.4064846 |
106 |
SIMON D L , BORGUET S , LEONARD O , et al. Aircraft engine gas path diagnostic methods: public benchmarking results[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136 (4): 041201.
doi: 10.1115/1.4025482 |
107 |
KOBAYASHI T , SIMON D L . Evaluation of an enhanced bank of Kalman filters for in-flight aircraft engine sensor fault diagnostics[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127, 497- 504.
doi: 10.1115/1.1850505 |
108 | KOBAYASHI T, SIMON D L. Hybrid Kalman filter approach for aircraft engine in-flight diagnostics: sensor fault detection case[C]//Proc. of the Turbo Expo 2006: Power for Land, Sea, and Air, 2006. |
109 | XUE W , GUO Y Q , ZHANG X D . Application of a bank of Kalman filters and a robust Kalman filter for aircraft engine sensor/actuator fault diagnosis[J]. International Journal of Innovative Computing, Information and Control, 2008, 4, 3161- 3168. |
110 | HE A, TAN D L, WANG X, et al. LMI-based aircraft en gine sensor fault diagnosis using a bank of robust H∞ filters[C]// Proc. of the International Conference on Computer Application and System Modeling, 2010. |
111 |
JAYARAM S . A new fast converging Kalman filter for sensor fault detection and isolation[J]. Sensor Review, 2010, 30, 219- 224.
doi: 10.1108/02602281011051407 |
10 |
王施, 王荣桥, 陈志英, 等. 航空发动机健康管理综述[J]. 燃气涡轮试验与研究, 2009, 22 (1): 51- 58.
doi: 10.3969/j.issn.1672-2620.2009.01.013 |
WANG S , WANG R Q , CHEN Z Y , et al. Survey on aircraft engine health management[J]. Gas Turbine Test and Research, 2009, 22 (1): 51- 58.
doi: 10.3969/j.issn.1672-2620.2009.01.013 |
|
11 |
张传超, 史永胜, 宋云雪. 航空发动机健康管理技术进展及趋势[J]. 航空发动机, 2008, 34 (4): 51- 55.
doi: 10.3969/j.issn.1672-3147.2008.04.014 |
ZHANG C C , SHI Y S , SONG Y X . Development and trend of health management technology for aeroengine[J]. Aeroengine, 2008, 34 (4): 51- 55.
doi: 10.3969/j.issn.1672-3147.2008.04.014 |
|
12 | 宋辉, 李晓明, 宋文波. 航空发动机健康评估技术综述[J]. 航空发动机, 2011, 21 (2): 57- 62. |
SONG H , LI X M , SONG W B . Review on aeroengine health assessment technology[J]. Aeroengine, 2011, 21 (2): 57- 62. | |
13 | 李应红, 尉询楷. 航空发动机的智能诊断、建模与预测方法[M]. 北京: 科学出版社, 2013. |
LI Y H , WEI X K . Intelligent diagnosis, modeling and prediction methods of aeroengine[M]. Beijing: Science Press, 2013. | |
14 | 曹明, 王鹏, 左洪福, 等. 民用航空发动机机故障诊断与健康管理: 现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43 (9): 42- 81. |
CAO M , WANG P , ZUO H F , et al. Current status, challenges and opportunities of civil aeroengine diagnostics & health ma-nagement Ⅱ: comprehensive off-board diagnosis, life management and intelligent condition-based MRO[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (9): 42- 81. | |
15 | HUNTER G W, BEHBAHANI A. A brief review of the need for robust smart wireless sensor systems for future propulsion systems, distributed engine controls, and propulsion health management[C]//Proc. of the International Instrumentation Symposium, 2012. |
112 | LIANG T, ZHANG X, DECASTRO J. Diagnosis of engine sensor, actuator and component faults using a bank of adaptive nonlinear estimators[C]//Proc. of the Aerospace Confe-rence, 2011. |
113 | POURBABAEE B, MESKIN N, KHORASANI K. Multiple-model based sensor fault diagnosis using hybrid Kalman filter approach for nonlinear gas turbine engines[C]//Proc. of the American Control Conference, 2013. |
114 |
POURBABAEE B , MESKIN N , KHORASANI K . Sensor fault detection, isolation, and identification using multiple-model-based hybrid Kalman filter for gas turbine engines[J]. IEEE Trans.on Control Systems Technology, 2016, 24, 1184- 1200.
doi: 10.1109/TCST.2015.2480003 |
115 |
LU F , CHEN Y , HUANG J Q , et al. An integrated nonli-near model-based approach to gas turbine engine sensor fault diagnostics[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228 (11): 2007- 2021.
doi: 10.1177/0954410013511596 |
116 |
CHANG X , HUANG J , LU F . Robust in-flight sensor fault diagnostics for aircraft engine based on sliding mode observers[J]. Sensors, 2017, 17 (4): 835.
doi: 10.3390/s17040835 |
117 |
LIU X , XUE N , YUAN Y . Aircraft engine sensor fault diagnostics using an on-line OBEM update method[J]. PloS One, 2017, 12, e0171037.
doi: 10.1371/journal.pone.0171037 |
118 | KUZNETSOVA T A. Kalman-filtering based algorithm for sensor's channel fault detection and isolation[C]//Proc. of the International Multi-Conference on Industrial Engineering and Modern Technologies, 2018. |
119 |
LU F , GAO T Y , HUANG J Q , et al. A novel distributed extended Kalman filter for aircraft engine gas-path health estimation with sensor fusion uncertainty[J]. Aerospace Science and Technology, 2019, 84, 90- 106.
doi: 10.1016/j.ast.2018.10.019 |
120 |
YUAN Y , DING S T , LIU X F , et al. Hybrid diagnosis system for aero engine sensor and actuator faults[J]. Journal of Aerospace Engineering, 2020, 33, 04019108.
doi: 10.1061/(ASCE)AS.1943-5525.0001105 |
121 |
YAN L , ZHANG H , DONG X , et al. Unscented Kalman-filter-based simultaneous diagnostic scheme for gas-turbine gas path and sensor faults[J]. Measurement Science and Technology, 2021, 32, 095905.
doi: 10.1088/1361-6501/abfd67 |
122 |
SUN R Q , HAN X B , CHEN Y X , et al. Hyperelliptic Kalman filter-based aeroengine sensor fault FDIA system under multi-source uncertainty[J]. Aerospace Science and Technology, 2023, 132, 108058.
doi: 10.1016/j.ast.2022.108058 |
16 | GARG S, SIMON D L. Challenges in aircraft engine control and gas path health management[EB/OL]. [2024-04-24]. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150009565.pdf. |
17 |
URBAN L A . Gas path analysis applied to turbine engine condition monitoring[J]. Journal of Aircraft, 1973, 10 (7): 400- 406.
doi: 10.2514/3.60240 |
18 | URBAN L A , VOLPONI A J . Mathematical methods of relative engine performance diagnostics[J]. SAE Transactions, 1992, 101, 2025- 2050. |
19 | SMETANA F, FO S. Turbojet engine gas path analysis: a review[C]//Proc. of the Advisory Group for Aerospace Research and Development Conference, 1975. |
20 | 鲁峰, 黄金泉, 吕怡秋, 等. 基于非线性自适应滤波的发动机气路部件健康诊断方法[J]. 航空学报, 2013, 34 (11): 2529- 2538. |
LU F , HUANG J Q , LYU Y Q , et al. Health diagnosis method of engine gas path components based on nonlinear adaptive filtering[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34 (11): 2529- 2538. | |
21 |
JASMANI M , LI Y , ARIFFIN Z . Measurement selections for multicomponent gas path diagnostics using analytical approach and measurement subset concept[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133 (11): 111701.
doi: 10.1115/1.4002348 |
22 | GULATI A, ZEDDA M, SINGH R. Gas turbine engine and sensor multiple operating point analysis using optimization tech niques[C]//Proc. of the 36th American Institute of Aeronau tics & Astronautics Joint Propulsion Conference and Exhibit, 2000. |
23 |
ARETAKIS N , MATHIOUDAKIS K , STAMATIS A . Nonlinear engine component fault diagnosis from a limited number of measurements using a combinatorial approach[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125 (3): 642- 650.
doi: 10.1115/1.1582494 |
24 | KAMBOUKOS P, MATHIOUDAKIS K. Multipoint non-line ar method for enhanced component and sensor malfunction diagnosis[C]// Proc. of the International Gas Turbine Conference, 2006. |
25 | ESCHER P, SINGH R. An object-oriented diagnostics computer program suitable for industrial gas turbines[C]//Proc. of the 21st United International Congress on Combustion Engines, 1995. |
123 |
LIU J Q . Sensor fault analysis of aero-engine using ensemble SCNN and Bayesian interval estimation[J]. Engineering Applications of Artificial Intelligence, 2023, 125, 106675.
doi: 10.1016/j.engappai.2023.106675 |
124 |
CRUZ-MANZO S , PANOV V , BINGHAM C . GAS turbine sensor fault diagnostic system in a real-time executable digital-twin[J]. Journal of the Global Power and Propulsion Society, 2023, 7, 85- 94.
doi: 10.33737/jgpps/159781 |
125 |
YAO K , WANG Y , FAN S S , et al. Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network[J]. Measurement Science and Technology, 2023, 34 (7): 075104.
doi: 10.1088/1361-6501/acc5fe |
126 |
YANG X L , ZHAO Q F , WANG Y Z , et al. Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation[J]. Energy, 2023, 262, 124996.
doi: 10.1016/j.energy.2022.124996 |
127 |
SI X S , WANG W B , HU C H , et al. Remaining useful life estimation-a review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213 (1): 1- 14.
doi: 10.1016/j.ejor.2010.11.018 |
128 | MONTGOMERY D , RUNGER G . Applied statistics and probability for engineers[M]. New York: John wiley & sons, 2010. |
129 |
LI Y , NILKITSARANONT P . Gas turbine performance prognostic for condition-bas ed maintenance[J]. Applied Energy, 2009, 86 (10): 2152- 2161.
doi: 10.1016/j.apenergy.2009.02.011 |
130 | ZAIDAN M A , MILLS A R , HARRISON R F , et al. Gas turbine engine prognostics using Bayesian hierarchical models: a variational approach[J]. Mechanical Systems and Signal Processing, 2016, 70, 120- 140. |
131 |
ZHOU D J , ZHANG H S , WENG S L . A novel prognostic model of performance degradation trend for power machinery maintenance[J]. Energy, 2014, 78, 740- 746.
doi: 10.1016/j.energy.2014.10.067 |
132 |
KIAKOJOORI S , KHORASANI K . Dynamic neural networks for gas turbine engine degradation prediction, health monitoring and prognosis[J]. Neural Computing and Applications, 2016, 27 (8): 2157- 2192.
doi: 10.1007/s00521-015-1990-0 |
26 |
OGAJI S , SAMPATH S , SINGH R , et al. Parameter selec tion for diagnosing a gas-turbine's performance-deterioration[J]. App-lied Energy, 2002, 73 (1): 25- 46.
doi: 10.1016/S0306-2619(02)00042-9 |
27 |
LI Y G . Gas turbine performance and health status estimation using adaptive gas path analysis[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132 (4): 041701.
doi: 10.1115/1.3159378 |
28 | KAMUNGE D. A non-linear weighted least squares gas turbine diagnostic approach and multi-fuel performance simulation[D]. Cranfield: Cranfield University, 2011. |
29 |
DOEL D . Temper-a gaspath analysis tool for commercial jet engines[J]. Journal of Engineering for Gas Turbines and Power, 1994, 116 (1): 82- 89.
doi: 10.1115/1.2906813 |
30 |
DOEL D . Interpretation of weighted-least-squares gas path analysis results[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125 (3): 624- 633.
doi: 10.1115/1.1582492 |
31 |
BORGUET S , LEONARD O . Comparison of adaptive filters for gas turbine performance monitoring[J]. Journal of Computational and Applied Mathematics, 2010, 234 (7): 2202- 2212.
doi: 10.1016/j.cam.2009.08.075 |
32 | LUPPOLD R, ROMAN J, GALLOPS G, et al. Estimating in-flight engine performance variations using Kalman filter concepts[C]//Proc. of the Joint Propulsion Conference, 1989. |
33 |
VOLPONI A J , DEPOLD H , GANGULI R , et al. The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125 (4): 917- 924.
doi: 10.1115/1.1419016 |
34 | LAMBERT H H. A simulation study of turbofan engine deterioration estimation using Kalman filtering techniques[R]. Cleveland: National Aeronautics and Space Administration, 1991. |
35 | VOLPONI A, SIMON D L. Enhanced self tuning on-board real- time model (ESTORM) for aircraft engine performance health tracking[R]. Cleveland: National Aeronautics and Space Administration, 2008. |
36 |
SIMON D , SIMON D L . Kalman filtering with inequality constraints for turbofan engine health estimation[J]. IEEE Proceedings-Control Theory and Applications, 2006, 153 (3): 371- 378.
doi: 10.1049/ip-cta:20050074 |
133 |
MUNEER A , TAIB S M , FATI S M , et al. Deep-learning based prognosis approach for remaining useful life prediction of turbofan engine[J]. Symmetry, 2021, 13 (10): 1861.
doi: 10.3390/sym13101861 |
134 | LI Y X, SHAN X M, ZHAO W, et al. A LS-SVM based approach for turbine engines prognostics using sensor data[C]//Proc. of the IEEE International Conference on Industrial Technology, 2019. |
135 | ZHANG C , LIM P , QIN A K , et al. Multi objective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Trans.on Neural Networks and Learning Systems, 2016, 28 (10): 2306- 2318. |
136 | HUANG C G , HUANG H Z , LI Y F . A bidirectional LSTM prognostics method under multiple operational conditions[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (10): 8792- 8802. |
137 | TSOUTSANIS E, MESKIN N, BENAMMAR M, et al. Per formance-based prognosis scheme for industrial gas turbines[C]// Proc. of the IEEE Conference on Prognostics and Health Mana- gement, 2015. |
138 | DAROOGHEH N, MESKIN N, KHORASANI K. A novel particle filter parameter prediction scheme for failure prognosis[C]// Proc. of the American Control Conference, 2014. |
139 | DAROOGHEH N, BANIAMERIAN A, MESKIN N, et al. A hybrid prognosis and health monitoring strategy by integra ting particle filters and neural networks for gas turbine engines[C]// Proc. of the IEEE Conference on Prognostics and Health Mana- gement, 2015. |
140 |
ZHOU D J , YU Z Q , ZHANG H S , et al. A novel grey prognostic model based on Markov process and grey incidence analy- sis for energy conversion equipment degradation[J]. Energy, 2016, 109, 420- 429.
doi: 10.1016/j.energy.2016.05.008 |
141 | TANNER G F, CRAWFORD J A. An integrated engine health monitoring system for gas turbine aero-engines[C]//Proc. of the Aircraft Airborne Condition Monitoring, 2003. |
142 | LEKKI J. Smart sensor systems for high temperature intelligent engine applications[C]//Proc. of the Annual Conference on Composites, Materials and Structures, 2011. |
143 |
USREY M , HARSH K , BRAND A , et al. Smart, in SITU, wide range pressure sensor for advanced engine controls[J]. SAE International Journal of Engines, 2014, 7 (4): 1619- 1628.
doi: 10.4271/2014-01-2167 |
37 | GUO Y Q, LU J, ZHANG S G. Improved hybrid Kalman filter for in-flight aircraft engine performance estimation[C]//Proc. of the 48th Aerospace Sciences & Aviation Technology, Joint Propulsion Conference, 2012. |
38 |
LU F , JU H F , HUANG J Q . An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring[J]. Aerospace Science and Technology, 2016, 58, 36- 47.
doi: 10.1016/j.ast.2016.08.008 |
39 |
LIU X F , ZHU J Q , LUO C S , et al. Aero-engine health de-gradation estimation based on an underdetermined extended Kalman filter and convergence proof[J]. ISA Transactions, 2022, 125, 528- 538.
doi: 10.1016/j.isatra.2021.06.040 |
40 | 王小旭, 梁彦, 潘泉, 等. 带有色量测噪声的非线性系统Unscented卡尔曼滤波器[J]. 自动化学报, 2012, 38 (6): 986- 998. |
WANG X X , LIANG Y , PAN Q , et al. Unscented Kalman filter for nonlinear systems with colored measurement noise[J]. Acta Automatica Sinica, 2012, 38 (6): 986- 998. | |
41 | DEWALLEF P, LEONARD O. On-line performance monitoring and engine diagnostic using robust Kalman filtering techniques[C]//Proc. of the Turbo Expo: Power for Land, Sea, and Air, 2003. |
42 |
SIMON D . A comparison of filtering approaches for aircraft engine health estimation[J]. Aerospace Science and Technology, 2008, 12 (4): 276- 284.
doi: 10.1016/j.ast.2007.06.002 |
43 | POURBABAEE B , MESKIN N , KHORASANI K . Sensor fault detection, isolation and identification using multiple-model-based hybrid Kalman filter for gas turbine engines[J]. IEEE Trans.on Control Systems Technology, 2015, 24 (4): 1184- 1200. |
44 | 袁慎芳, 张华, 邱雷, 等. 基于粒子滤波算法的疲劳裂纹扩展预测方法[J]. 航空学报, 2013, 34 (12): 2740- 2747. |
YUAN S F , ZHANG H , QIU L , et al. A fatigue crack growth prediction method based on particle filter[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34 (12): 2740- 2747. | |
45 | WANG P, GAO R X. Particle filtering-based system degradation prediction applied to jet engines[C]//Proc. of the Annual Conference of the PHM Society, 2014. |
46 |
黄金泉, 陈煜, 周浩文, 等. 基于QPSO粒子滤波的航空发动机突变故障诊断[J]. 南京航空航天大学学报, 2014, 46 (4): 494- 500.
doi: 10.3969/j.issn.1005-2615.2014.04.002 |
HUANG J Q , CHEN Y , ZHOU H W . QPSO particle filter based abrupt fault diagnostics for gas turbine engine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46 (4): 494- 500.
doi: 10.3969/j.issn.1005-2615.2014.04.002 |
|
47 |
CHEN Y Z , TSOUTSANIS E , WANG C , et al. A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions[J]. Energy, 2023, 263, 125848.
doi: 10.1016/j.energy.2022.125848 |
48 |
黄开明, 黄金泉, 郭腊梅. 涡轴发动机全状态实时气动热力学数值模拟[J]. 航空发动机, 2006, 32 (4): 26- 30.
doi: 10.3969/j.issn.1672-3147.2006.04.008 |
HUANG K M , HUANG J Q , GUO L M . Realtime full-state aero thermodynamics simulation of turboshaft engine[J]. Aeroengine, 2006, 32 (4): 26- 30.
doi: 10.3969/j.issn.1672-3147.2006.04.008 |
|
49 |
姜涛, 王进, 李应红. 某型发动机动态特性仿真研究[J]. 空军工程大学学报: 自然科学版, 2001, 2 (6): 15- 18.
doi: 10.3969/j.issn.1009-3516.2001.06.004 |
JIANG T , WANG J , LI Y H . Simulation study on dynamic characteristics of a certain engine[J]. Journal of Air Force Engineering University, 2001, 2 (6): 15- 18.
doi: 10.3969/j.issn.1009-3516.2001.06.004 |
|
50 | 黄伟斌, 黄金泉. 航空发动机故障诊断的机载自适应模型[J]. 航空动力学报, 2008, 23 (3): 580- 584. |
HUANG W B , HUANG J Q . On board self-tuning model for aero-engine fault diagnostics[J]. Journal of Aerospace Power, 2008, 23 (3): 580- 584. | |
51 |
STAMATIS A , MATHIOUDAKIS K , PAPAILIOU K D . Adaptive simulation of gas turbine performance[J]. Gas Turbine Experiment and Research, 2009, 22 (1): 51- 58.
doi: 10.3969/j.issn.1672-2620.2009.01.013 |
52 |
KONG C , KI J , KANG M . A new scaling method for component maps of gas turbine using system identification[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125 (4): 979- 985.
doi: 10.1115/1.1610014 |
53 | KONG C, KHO S, KI J. Component map generation of a gas turbine using genetic algorithms[C]//Proc. of the Turbo Expo: Power for Land, Sea, and Air, 2004. |
54 |
LI Y G , MARINAI L , GATTO E L , et al. Multiple-point adaptive performance simulation tuned to aeroengine test-bed data[J]. Journal of Propulsion and Power, 2009, 25 (3): 635- 641.
doi: 10.2514/1.38823 |
55 |
CHEN Y Z , ZHAO X D , XIANG H C , et al. A sequential model-based approach for gas turbine performance diagnostics[J]. Energy, 2021, 220, 119657.
doi: 10.1016/j.energy.2020.119657 |
56 | TSOUTSANIS E, LI Y G, PILIDIS P, et al. Part-load performance of gas turbines: part I-a novel compressor map generation approach suitable for adaptive simulation[C]//Proc. of the Gas Turbine India, 2012. |
57 |
MISTE G , BENINI E . Turbojet engine performance tuning with a new map adaptation concept[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136 (7): 071202.
doi: 10.1115/1.4026548 |
58 |
YANG Q C , LI S Y , CAO Y P . A new component map gener ation method for gas turbine adaptation performance simulation[J]. Journal of Mechanical Science and Technology, 2017, 31 (4): 1947- 1957.
doi: 10.1007/s12206-017-0344-5 |
59 |
刘小方, 蒋磊, 司品顺, 等. 燃气轮机压气机特性曲线的拟合方法[J]. 舰船科学技术, 2012, 34 (7): 61- 63.
doi: 10.3404/j.issn.1672-7649.2012.07.012 |
LIU X F , JIANG L , SI P S , et al. Research on curve fitting method of compressor characteristic curve[J]. Ship Science and Technology, 2012, 34 (7): 61- 63.
doi: 10.3404/j.issn.1672-7649.2012.07.012 |
|
60 | BECKER R G, WOLTERS F, NAUROZ M, et al. Development of a gas turbine performance code and its application to preliminary engine design[C]//Proc. of the German Aerospace Congress, 2011. |
61 | 唐狄毅, 王永明. 计算压气机特性的基元叶片法[J]. 航空动力学报, 1993, 8 (3): 217- 220. |
TANG D Y , WANG Y M . Elementary blade method for calculating compressor characteristics[J]. Journal of Aerospace Power, 1993, 8 (3): 217- 220. | |
62 |
KIM J H , KIM T S . A new approach to generate turbine map data in the sub-idle operation regime of gas turbines[J]. Energy, 2019, 173, 772- 784.
doi: 10.1016/j.energy.2019.02.110 |
63 |
郝英, 孙健国, 白杰. 航空燃气涡轮发动机气路故障诊断现状与展望[J]. 航空动力学报, 2003, 18 (6): 753- 760.
doi: 10.3969/j.issn.1000-8055.2003.06.009 |
HAO Y , SUN J G , BAI J . State-of-the-art and prospect of aircraft engine fault diagnosis using gas path parameters[J]. Journal of Aerospace Power, 2003, 18 (6): 753- 760.
doi: 10.3969/j.issn.1000-8055.2003.06.009 |
|
64 | JAW L C. Recent advancements in aircraft engine health ma- nagement technologies and recommendations for the next step[C]// Proc. of the Turbo Expo: Power for Land, Sea, and Air, 2005. |
65 |
JOLY R B , OGAJI S O T , SINGH R , et al. Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine[J]. Applied Energy, 2004, 78 (4): 397- 418.
doi: 10.1016/j.apenergy.2003.10.002 |
66 |
FENTAYE A , BAHETA A , GILANI S . Gas turbine gas-path fault identification using nested artificial neural networks[J]. Aircraft Engineering and Aerospace Technology, 2018, 90 (6): 992- 999.
doi: 10.1108/AEAT-01-2018-0013 |
67 | GHORBANIAN K , GHOLAMREZAEI M . An artificial neural network approach to compressor performance prediction[J]. Applied Energy, 2009, 86 (7): 1210- 1221. |
68 |
TAHAN M , MUHAMMAD M , ABDUL K Z A . A multi-nets ANN model for real-time performance-based automatic fault diagnosis of industrial gas turbine engines[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39 (7): 2865- 2876.
doi: 10.1007/s40430-017-0742-8 |
69 |
TALEBI S , MADADI A , TOUSI A M , et al. Micro gas turbine fault detection and isolation with a combination of artificial neural network and off-design performance analysis[J]. Engineering Applications of Artificial Intelligence, 2022, 113, 104900.
doi: 10.1016/j.engappai.2022.104900 |
70 | 何学文, 赵海鸣. 支持向量机及其在机械故障诊断中的应用[J]. 中南大学学报: 自然科学版, 2005, 36 (1): 97- 101. |
HE X W , ZHAO H M . Support vector machine and its application to machinery fault diagnosis[J]. Journal of Central South University: Science and Technology, 2005, 36 (1): 97- 101. | |
71 | 徐启华, 耿帅, 师军. 基于大规模训练集SVM的发动机故障诊断[J]. 航空动力学报, 2011, 26 (12): 2841- 2848. |
XU Q H , GENG S , SHI J . Fault diagnosis method for aero-engine based on SVM with large-scale training set[J]. Journal of Aerospace Power, 2011, 26 (12): 2841- 2848. | |
72 |
ZHOU D G , ZHANG H S , WENG S L . A new gas path fault diagnostic method of gas turbine based on support vector machine[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137 (10): 102605.
doi: 10.1115/1.4030277 |
73 | VIVIAN B, SINGH R. Application of expert system technology to gas path analysis of a single shaft turboprop engine[C]//Proc. of the 5th European Propulsion Forum, 1995. |
74 |
NAN C , KHAN F , IQBAL M T . Real-time fault diagnosis using knowledge-based expert system[J]. Process Safety and Environmental Protection, 2008, 86 (1): 55- 71.
doi: 10.1016/j.psep.2007.10.014 |
75 | YU J, REITER E, HUNTER J, et al. Sumtime-turbine: a knowledge-based system to communicate gas turbine time-series data[C]//Proc. of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 2003. |
76 |
KIM M , KOSKO B . Neural fuzzy motion estimation and compensation[J]. IEEE Trans.on Signal Processing, 1997, 45 (10): 2515- 2532.
doi: 10.1109/78.640716 |
77 | FUSTER P L, A MARTIN J. Abductive diagnostic procedure based on an and/or/not graph for expected behavior: applica tion to a gas turbine[C]//Proc. of the 10th international Congress and Exhibition on Condition Monitoring and Diagnostics, 1997. |
78 |
DEMIRCI S , HAJIYEV C , SCHWENKE A . Fuzzy logic-based automated engine health monitoring for commercial aircraft[J]. Aircraft Engineering and Aerospace Technology, 2008, 80 (5): 516- 525.
doi: 10.1108/00022660810899883 |
144 | FREDIANI L, USREY M W, WATTS O A. Technical opportunities for high temperature "smart" P3 sensors and electronics for distributed engine control[C]//Proc. of the 52nd Aerospace Sciences & Aviation Technology Joint Propulsion Conference, 2016. |
[1] | 肖盈飞, 刘海颖, 程月华, 李铁香. 基于双模型自适应估计的大气数据传感器故障诊断方法[J]. 系统工程与电子技术, 2024, 46(11): 3792-3799. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||