1 |
BAO C Y , WANG P , TANG G J . Integrated method of gui-dance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34 (5): 535- 553.
doi: 10.1016/j.cja.2020.11.009
|
2 |
XU S H , WEI C Z , ZHANG L T , et al. Neural network based adaptive non-singular practical predefined-time fault-tolerant control for hypersonic morphing aircraft[J]. Chinese Journal of Aeronautics, 2024, 37 (4): 421- 435.
doi: 10.1016/j.cja.2023.12.020
|
3 |
WU Z H , LU J C , ZHOU Q , et al. Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints[J]. Nonlinear Dynamics, 2017, 87 (4): 2367- 2383.
doi: 10.1007/s11071-016-3196-0
|
4 |
LIANG X H , WANG Q , XU B , et al. Backstepping fault-toler ant control for morphing aircraft based on fixed-time observer[J]. International Journal of Control, Automation and Systems, 2021, 19 (12): 3924- 3936.
doi: 10.1007/s12555-020-0764-3
|
5 |
DONG C Y , LIU C , WANG Q , et al. Switched adaptive active disturbance rejection control of variable structure near space vehicles based on adaptive dynamic programming[J]. Chinese Journal of Aeronautics, 2019, 32 (7): 1684- 1694.
doi: 10.1016/j.cja.2019.03.009
|
6 |
DAI P , FENG D Z , ZHAO J Q , et al. Asymmetric integral barrier Lyapunov function based dynamic surface control of a state-constrained morphing waverider with anti-saturation compensator[J]. Aerospace Science and Technology, 2022, 131, 107975.
doi: 10.1016/j.ast.2022.107975
|
7 |
陈浩岚, 王鹏, 汤国建. 变形飞行器输出误差受限与输入饱和控制方法[J]. 航空学报, 2023, 44 (15): 408- 419.
|
|
CHEN H L , WANG P , TANG G J . Attitude control scheme for morphing vehicles with output error constraints and input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (15): 408- 419.
|
8 |
蔡光斌, 毛定坤, 杨芊, 等. 基于SDRE的变体飞行器LPV稳定控制[J]. 系统工程与电子技术, 2023, 45 (12): 4013- 4020.
doi: 10.12305/j.issn.1001-506X.2023.12.32
|
|
CAI G B , MAO D K , YANG Q , et al. LPV stability control of morphing aircraft based on SDRE[J]. Systems Engineering and Electronics, 2023, 45 (12): 4013- 4020.
doi: 10.12305/j.issn.1001-506X.2023.12.32
|
9 |
YAN B B , LI Y , DAI P , et al. Aerodynamic analysis, dynamic modeling, and control of a morphing aircraft[J]. Journal of Aerospace Engineering, 2019, 32 (5): 04019058.
doi: 10.1061/(ASCE)AS.1943-5525.0001047
|
10 |
JIANG W L , DONG C Y , WANG Q . A systematic method of smooth switching LPV controllers design for a morphing aircraft[J]. Chinese Journal of Aeronautics, 2015, 28 (6): 1640- 1649.
doi: 10.1016/j.cja.2015.10.005
|
11 |
XU W F , LI Y H , PEI B B , et al. Coordinated intelligent control of the flight control system and shape change of variable sweep morphing aircraft based on dueling-DQN[J]. Aerospace Science and Technology, 2022, 130, 107898.
doi: 10.1016/j.ast.2022.107898
|
12 |
BABAEI A R , MALEKZADEH M , MADHKHAN D . Adaptive super-twisting sliding mode control of 6-DOF nonlinear and uncertain air vehicle[J]. Aerospace Science and Technology, 2019, 84, 361- 374.
doi: 10.1016/j.ast.2018.09.013
|
13 |
CHU L L , LI Q , GU F , et al. Design, modeling, and control of morphing aircraft: a review[J]. Chinese Journal of Aeronautics, 2022, 35 (5): 220- 246.
doi: 10.1016/j.cja.2021.09.013
|
14 |
韦俊宝, 李海燕, 李静. 高超声速飞行器新型攻角约束反演控制[J]. 系统工程与电子技术, 2022, 44 (4): 1310- 1317.
doi: 10.12305/j.issn.1001-506X.2022.04.29
|
|
WEI J B , LI H Y , LI J . Novel back-stepping control for hypersonic vehicle with angle of attack constraint[J]. Systems Engineering and Electronics, 2022, 44 (4): 1310- 1317.
doi: 10.12305/j.issn.1001-506X.2022.04.29
|
15 |
GONG L G , WANG Q , DONG C Y . Disturbance rejection control of morphing aircraft based on switched nonlinear systems[J]. Nonlinear Dynamics, 2019, 96 (2): 975- 995.
doi: 10.1007/s11071-019-04834-9
|
16 |
WANG Q , GONG L G , DONG C Y , et al. Morphing aircraft control based on switched nonlinear systems and adaptive dynamic programming[J]. Aerospace Science and Technology, 2019, 93, 105325.
doi: 10.1016/j.ast.2019.105325
|
17 |
AN H , WANG C H , FIDAN B . Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle[J]. Acta Astronautica, 2017, 139, 111- 121.
doi: 10.1016/j.actaastro.2017.06.026
|
18 |
SUN J G , SONG S M , CHEN H. , et al. Fast terminal sliding mode tracking control of hypersonic vehicles based on non-ho-mogeneous disturbance observer[J]. International Journal of Control, Automation and Systems, 2017, 15 (6): 2646- 2659.
doi: 10.1007/s12555-016-0785-0
|
19 |
SUN J L , YI J Q , PU Z Q , et al. Fixed-time sliding mode disturbance observer-based nonsmooth backstepping control for hypersonic vehicles[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2020, 50 (11): 4377- 86.
doi: 10.1109/TSMC.2018.2847706
|
20 |
李亚苹, 王芳, 周超. 全状态受限的高超声速飞行器的预定性能滤波反步控制[J]. 航空学报, 2020, 41 (11): 109- 120.
|
|
LI Y P , WANG F , ZHOU C . Prescribed performance filter back-stepping control of hypersonic vehicle with full state constraints[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (11): 109- 120.
|
21 |
曹承钰, 李繁飙, 廖宇新, 等. 高超声速变外形飞行器建模与固定时间预设性能控制[J]. 自动化学报, 2024, 50 (3): 486- 504.
|
|
CAO C Y , LI F B , LIAO X Y , et al. Modeling and fixed-time prescribed performance control for hypersonic morphing vehicle[J]. Acta Automatica Sinica, 2024, 50 (3): 486- 504.
|
22 |
WU Y Y , ZHANG Y , WU A G . Preassigned finite-time attitude control for spacecraft based on time-varying barrier Lyapunov functions[J]. Aerospace Science and Technology, 2021, 108, 106331.
doi: 10.1016/j.ast.2020.106331
|
23 |
ZHANG F , SONG M S , HUANG B X , et al. Adaptive tracking control for tethered aircraft systems with actuator nonli-nearities and output constraints[J]. IEEE Trans.on Aerospace and Electronic Systems, 2024, 60 (3): 3582- 3597.
doi: 10.1109/TAES.2024.3367283
|
24 |
陈峣, 谭立国, 魏毅寅, 等. 考虑状态约束的弹性高超声速飞行器自适应饱和容错控制[J]. 宇航学报, 2021, 42 (7): 850- 861.
|
|
CHEN X , TAN L G , WEI Y Y , et al. Adaptive saturated fault-tolerant tracking control of flexible hypersonic vehicle considering state constraints[J]. Journal of Astronautics, 2021, 42 (7): 850- 861.
|
25 |
GALEANI S , TARBOURIECH S , TURNER M , et al. A tutorial on modern anti-windup design[J]. European Journal of Control, 2009, 15 (3): 418- 440.
|
26 |
DING Y B , WANG X G , BAI Y L , et al. Novel anti-saturation robust controller for flexible air-breathing hypersonic vehicle with actuator constraints[J]. ISA Transactions, 2020, 99, 95- 109.
doi: 10.1016/j.isatra.2019.09.010
|
27 |
QIN W W , HE B , LIU G , et al. Robust model predictive tracking control of hypersonic vehicles in the presence of actuator constraints and input delays[J]. Journal of the Franklin Institute, 2016, 353 (17): 4351- 67.
doi: 10.1016/j.jfranklin.2016.08.007
|
28 |
HU X X , KARIMI H R , WU L G , et al. Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles[J]. IET Control Theory & Applications, 2014, 8 (13): 1147- 53.
|
29 |
WANG L , QI R Y , PENG Z Y . Integrated design of adaptive fault-tolerant control for non- minimum phase hypersonic flight vehicle system with input saturation and state constraints[J]. Journal of Aerospace Engineering, 2022, 236 (11): 2281- 301.
|
30 |
DAI P , YAN B B , HAN T , et al. Barrier Lyapunov function based model predictive control of a morphing waverider with input saturation and full-state constraints[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (3): 3071- 3081.
doi: 10.1109/TAES.2022.3222294
|
31 |
DAI P , YAN B B , LIU R F , et al. Modeling and nonlinear model predictive control of a variable-sweep-wing morphing waverider[J]. IEEE Access, 2021, 9, 63510- 63520.
doi: 10.1109/ACCESS.2021.3074912
|
32 |
张远, 黄万伟, 路坤锋, 等. 高超声速变外形飞行器建模与有限时间控制[J]. 北京航空航天大学学报, 2022, 48 (10): 1979- 1993.
|
|
ZHANG Y , HUANG W W , LU K F , et al. Modeling and finite-time control for the hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): 1979- 1993.
|
33 |
ZHANG Y C , MA M C , YANG X Y , et al. Disturbance-observer-based fixed-time control for 6-DOF spacecraft rendezvous and docking operations under full-state constraints[J]. Acta Astronautica, 2023, 205, 225- 238.
doi: 10.1016/j.actaastro.2023.02.005
|
34 |
LU Y B , HUANG P F , MENG Z J . Adaptive neural network dynamic surface control of the post-capture tethered spacecraft[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (2): 1406- 1419.
doi: 10.1109/TAES.2019.2930015
|
35 |
BASIN M , YU P , SHTESSEL Y . Finite- and fixed-time diffe-rentiators utilising HOSM techniques[J]. IET Control Theory & Applications, 2017, 11 (8): 1144- 1152.
|
36 |
CHEN H L , WANG P , TANG G J . Prescribed-time control for hypersonic morphing vehicles with state error constraints and uncertainties[J]. Aerospace Science and Technology, 2023, 142, 108671.
doi: 10.1016/j.ast.2023.108671
|
37 |
SáNCHEZTORRES J D, SANCHEZ E N, LOUKIANOV A G. Predefined-time stability of dynamical systems with sliding modes[C]//Proc. of the American Control Conference, 2015.
|
38 |
LIU Y , LIU X P , JING Y W , et al. Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network[J]. IEEE Trans.on Neural Networks and Learning Systems, 2020, 31 (4): 1222- 1231.
doi: 10.1109/TNNLS.2019.2919577
|
39 |
ZHAO J Q , FENG D Z , CUI J S , et al. Finite-time extended state observer-based fixed-time attitude control for hypersonic vehicles[J]. Mathematics, 2022, 10 (17): 3162.
doi: 10.3390/math10173162
|