

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (1): 173-181.doi: 10.12305/j.issn.1001-506X.2025.01.18
雷勤, 高颜兵, 周煜丰, 吴志彬
收稿日期:2023-12-21
									
				
									
				
									
				
											出版日期:2025-01-21
									
				
											发布日期:2025-01-25
									
			通讯作者:
					吴志彬
												作者简介:雷勤(1998—), 男, 硕士研究生, 主要研究方向为车辆路径规划、机器学习与应用基金资助:Qin LEI, Yanbing GAO, Yufeng ZHOU, Zhibin WU
Received:2023-12-21
									
				
									
				
									
				
											Online:2025-01-21
									
				
											Published:2025-01-25
									
			Contact:
					Zhibin WU   
												摘要:
针对城市物流中日益凸显的客户个性化交付需求问题, 提出考虑交付满意度的路径规划问题。首先, 以客户对交付方式的个性化偏好排序作为客户满意度的度量, 建立旨在最小化运营总成本的优化模型, 其中涵盖电动汽车固定成本、旅途成本、充电成本以及因未能满足客户最早开始服务时间惩罚成本和地点偏好惩罚成本。其次, 针对大规模客户场景, 设计一种融合自适应大邻域搜索与禁忌搜索的混合启发式算法。最后, 运用基准数据分析验证模型的正确性和算法的有效性。结果表明, 基于多交付选项模型规划配送方案能帮助企业节省成本, 且只需要付出较小的成本就能实现较高的服务质量, 提高客户满意度。
中图分类号:
雷勤, 高颜兵, 周煜丰, 吴志彬. 基于改进ALNS算法的多交付选项路径规划[J]. 系统工程与电子技术, 2025, 47(1): 173-181.
Qin LEI, Yanbing GAO, Yufeng ZHOU, Zhibin WU. Multi-delivery option path planning based on improved ALNS algorithm[J]. Systems Engineering and Electronics, 2025, 47(1): 173-181.
 
												
												表1
模型参数及变量"
| 符号 | 含义 | 
| N | 所有客户集合 | 
| Oc | 客户c的所有交付选项 | 
| L | 地点集合 | 
| F | 充电站集合 | 
| V | 所有节点集 | 
| E | 所有节点所形成的弧集 | 
| K | 所有可用车辆集合 | 
| P | 客户偏好等级数目 | 
| βp | 所有客户中以优先级不超过p的选项完成配送的客户比例 | 
| dij | 两节点之间的距离 | 
| tij | 两节点之间的行驶时间 | 
| si | 交付选项i的服务时间 | 
| ei | 交付选项i的最早开始服务时间 | 
| li | 交付选项i的最晚开始服务时间 | 
| qo | 客户在选项o处的需求量 | 
| po | 选项o对应的偏好水平 | 
| C | 车辆最大载荷量 | 
| Q | 车辆电池容量 | 
| cr | 充电成本 | 
| cv | 车辆固定成本 | 
| ct | 时间惩罚系数 | 
| cpt | 地点偏好惩罚系数 | 
| g | 充电速率 | 
| r | 车辆电池消耗速率 | 
| yo | 表示交付选项o是否会被选择 | 
| rfk | 表示车辆k在充电站f的充电量 | 
| vik | 表示车辆k在离开节点i的剩余电量 | 
| hik | 表示车辆k在节点i的开始服务时间 | 
| xijk | 表示车辆k是否经过弧(i, j) | 
 
												
												表4
ALNS-TS求解VRPTW算例结果"
| 算例 | 已知最优解 | ALNS-TS | ||||
| NV | TD | NV | TD | 时间/s | ||
| C101 | 10 | 829 | 10 | 829 | 22 | |
| C104 | 10 | 825 | 10 | 825 | 65 | |
| C201 | 3 | 592 | 3 | 592 | 25 | |
| C204 | 3 | 591 | 3 | 591 | 37 | |
| R101 | 19 | 1 651 | 19 | 1 654 | 62 | |
| R104 | 9 | 1 007 | 11 | 1 003 | 50 | |
| R201 | 4 | 1 252 | 6 | 1 212 | 63 | |
| R204 | 2 | 826 | 4 | 742 | 75 | |
| RC101 | 14 | 1 697 | 16 | 1 673 | 28 | |
| RC108 | 10 | 1 140 | 11 | 1 148 | 45 | |
| RC201 | 4 | 1 407 | 5 | 1 364 | 55 | |
| RC208 | 3 | 828 | 4 | 861 | 48 | |
 
												
												表6
EVRPDO算例结果对比"
| 算例 | 交付选项的数量 | Gurobi | ALNS-TS | |||||
| TC | Gap/% | t/s | TC | t/s | Δ/% | |||
| U_25large_1 | 50 | 991.25 | 74.75 | 7 200 | 956.94 | 8.98 | -3.46 | |
| U_25large_5 | 50 | 914.17 | 83.31 | 7 200 | 874.22 | 8.52 | -4.37 | |
| U_25medium_2 | 50 | 1 144.88 | 84.21 | 7 200 | 886.7 | 7.75 | -22.55 | |
| U_25medium_7 | 50 | 815.06 | 79.64 | 7 200 | 805.74 | 7.96 | -1.14 | |
| U_25small_3 | 50 | 1 155.40 | 78.51 | 7 200 | 920.22 | 7.20 | -20.36 | |
| U_25small_6 | 50 | 869.94 | 79.60 | 7 200 | 826.82 | 7.33 | -4.96 | |
| U_50large_2 | 100 | 2 649.80 | 90.64 | 7 200 | 1 963.81 | 48.58 | -25.89 | |
| U_50large_8 | 100 | 3 011.46 | 91.62 | 7 200 | 1 890.5 | 51.82 | -37.22 | |
| U_50medium_1 | 100 | 2 191.47 | 87.68 | 7 200 | 1 816.27 | 46.86 | -17.12 | |
| U_50medium_6 | 100 | 2 280.68 | 89.66 | 7 200 | 1 892.04 | 44.04 | -17.04 | |
| U_50small_2 | 100 | 1 756.97 | 86.54 | 7 200 | 1 717.16 | 30.88 | -2.27 | |
| U_50small_8 | 100 | 2 381.76 | 89.05 | 7 200 | 1 776.86 | 31.22 | -25.40 | |
| V_25large_2 | 38 | 1 097.95 | 80.54 | 7 200 | 996.84 | 5.39 | -9.21 | |
| V_25large_6 | 38 | 1 326.16 | 85.28 | 7 200 | 1 035.22 | 4.63 | -21.94 | |
| V_25medium_10 | 38 | 1 103.72 | 78.71 | 7 200 | 1 019.83 | 8.66 | -7.60 | |
| V_25medium_9 | 38 | 1 106.36 | 83.89 | 7 200 | 870.96 | 4.95 | -21.28 | |
| V_25small_10 | 38 | 995.95 | 61.50 | 7 200 | 967.39 | 7.36 | -2.87 | |
| V_25small_4 | 38 | 934.13 | 73.91 | 7 200 | 901.1 | 4.17 | -3.54 | |
| V_50large_10 | 76 | 2 513.05 | 86.98 | 7 200 | 1 992.4 | 28.53 | -20.72 | |
| V_50large_2 | 76 | 2 369.52 | 88.42 | 7 200 | 2 023.2 | 18.54 | -14.62 | |
| V_50medium_3 | 76 | 1 964.08 | 86.52 | 7 200 | 1 487.74 | 18.00 | -24.25 | |
| V_50medium_6 | 76 | 2 171.31 | 87.22 | 7 200 | 1 622.29 | 28.26 | -25.29 | |
| V_50small_2 | 76 | 1 824.64 | 84.48 | 7 200 | 1 779 | 24.35 | -2.50 | |
| V_50small_7 | 76 | 1 888.75 | 83.55 | 7 200 | 1 572.32 | 16.56 | -16.75 | |
| 1 | WASSMUTH K ,  KOEHLER C ,  AGATZ N , et al.  Demand management for attended home delivery-a literature review[J]. European Journal of Operational Research, 2023, 311 (3): 801- 815. doi: 10.1016/j.ejor.2023.01.056 | 
| 2 | FLECKENSTEIN D ,  KLEIN R ,  STEIN-HARDT C .  Recent advances in integrating demand management and vehicle routing: a methodological review[J]. European Journal of Operational Research, 2023, 306 (2): 499- 518. doi: 10.1016/j.ejor.2022.04.032 | 
| 3 | LIIMATAINEN H ,  VAN V O ,  APLYN D .  The potential of electric trucks-an international commodity-level analysis[J]. Applied Energy, 2019, 236, 804- 814. doi: 10.1016/j.apenergy.2018.12.017 | 
| 4 | OU S, LIN Z H, WU Z X, et al. A study of China's explosive growth in the plug-in electric vehicle market[R]. Tennessess: The Oak Ridge National Laboratory, 2017. | 
| 5 | 刘瑶, 夏阳升, 石建迈, 等.  车载多无人机协同多区域覆盖路径规划方法[J]. 系统工程与电子技术, 2023, 45 (5): 1380- 1390. doi: 10.12305/j.issn.1001-506X.2023.05.14 | 
| LIU Y ,  XIA Y S ,  SHI J M , et al.  Path planning method for multi-area coverage by cooperated ground vehicle multi-drone[J]. Systems Engineering and Electronics, 2023, 45 (5): 1380- 1390. doi: 10.12305/j.issn.1001-506X.2023.05.14 | |
| 6 | 李翰, 张洪海, 张连东, 等.  城市区域多物流无人机协同任务分配[J]. 系统工程与电子技术, 2021, 43 (12): 3594- 3602. doi: 10.12305/j.issn.1001-506X.2021.12.22 | 
| LI H ,  ZHANG H H ,  ZHANG L D , et al.  Multiple logistics unmanned aerial vehicle collaborative task allocation in urban areas[J]. Systems Engineering and Electronics, 2021, 43 (12): 3594- 3602. doi: 10.12305/j.issn.1001-506X.2021.12.22 | |
| 7 | SCHNEIDER M ,  STENGER A ,  GOEKE D .  The electric vehicle-routing problem with time windows and recharging stations[J]. Transportation Science, 2014, 48 (4): 500- 520. doi: 10.1287/trsc.2013.0490 | 
| 8 | KESKIN M ,  CATAY B .  Partial recharge strategies for the electric vehicle routing problem with time windows[J]. Transportation Research Part C: Emerging Technologies, 2016, 65, 111- 127. doi: 10.1016/j.trc.2016.01.013 | 
| 9 | RAEESI R ,  ZOGRAFOS K G .  The electric vehicle routing problem with time windows and synchronized mobile battery swapping[J]. Transportation Research Part B: Methodological, 2020, 140, 101- 129. doi: 10.1016/j.trb.2020.06.012 | 
| 10 | HIERMANN G ,  PUCHINGER J ,  ROPKE S , et al.  The electric fleet size and mix vehicle routing problem with time windows and recharging stations[J]. European Journal of Operational Research, 2016, 252 (3): 995- 1018. doi: 10.1016/j.ejor.2016.01.038 | 
| 11 | MONTOYA A ,  GUERET C ,  MENDOZA J E , et al.  The electric vehicle routing problem with nonlinear charging function[J]. Transportation Research Part B: Methodological, 2017, 103, 87- 110. doi: 10.1016/j.trb.2017.02.004 | 
| 12 | SHEN Y D ,  PENG L W ,  LI J P .  An improved estimation of distribution algorithm for multi-compartment electric vehicle routing problem[J]. Journal of Systems Engineering and Elec-tronics, 2021, 32 (2): 365- 379. doi: 10.23919/JSEE.2021.000030 | 
| 13 | 黄志红, 黄卫来, 郭放. 考虑电池损耗的电动汽车充电设施选址与充电策略协同优化研究[J]. 中国管理科学, 2024, 32 (6): 68- 78. | 
| HUANG Z H , HUANG W L , GUO F . Collaborative optimization of charging network and charging strategy with practical battery wear model[J]. Chinese Journal of Management Science, 2024, 32 (6): 68- 78. | |
| 14 | REYES D ,  SAVELSBERGH M ,  TORIELLO A .  Vehicle routing with roaming delivery locations[J]. Transportation Research Part C: Emerging Technologies, 2017, 80, 71- 91. doi: 10.1016/j.trc.2017.04.003 | 
| 15 | OZBAYGIN G ,  KARASAN O E ,  SAVELSB-ERGH M , et al.  A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[J]. Transportation Research Part B: Methodological, 2017, 100, 115- 137. doi: 10.1016/j.trb.2017.02.003 | 
| 16 | LOMBARD A ,  TAMAYO-GIRALDO S ,  FONTANE F .  Vehicle routing problem with roaming delivery locations and stochastic travel times (VRPRDL-S)[J]. Transportation Research Procedia, 2018, 30, 167- 177. doi: 10.1016/j.trpro.2018.09.019 | 
| 17 | DENG Y ,  ZHU W H ,  LI H W , et al.  Multi-type ant system algorithm for the time dependent vehicle routing problem with time windows[J]. Journal of Systems Engineering and Electro-nics, 2018, 29 (3): 625- 638. doi: 10.21629/JSEE.2018.03.20 | 
| 18 | CHEN M C ,  YERASANI S ,  TIWARI M K .  Solving a 3-dimensional vehicle routing problem with delivery options in city logistics using fast-neighborhood based crowding differential evolution algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (8): 10389- 10402. doi: 10.1007/s12652-022-03696-1 | 
| 19 | FREY C M M ,  JUNGWIRTH A ,  FREY M , et al.  The vehicle routing problem with time windows and flexible delivery locations[J]. European Journal of Operational Research, 2023, 308 (3): 1142- 1159. doi: 10.1016/j.ejor.2022.11.029 | 
| 20 | SADATI M E H ,  AKBARI V ,  CATAY B .  Electric vehicle routing problem with flexible deliveries[J]. International Journal of Production Research, 2022, 60 (13): 4268- 4294. doi: 10.1080/00207543.2022.2032451 | 
| 21 | ZHOU S Q ,  ZHANG D Z ,  JI B , et al.  Two-echelon vehicle routing problem with direct deliveries and access time windows[J]. Expert Systems with Applications, 2024, 244, 121150. doi: 10.1016/j.eswa.2023.121150 | 
| 22 | ENTHOVEN D L J U , JARGALSAIKHAN B , ROODBERGEN K J , et al. The two-echelon vehicle routing problem with covering options: city logistics with cargo bikes and parcel lockers[J]. Computers & Operations Research, 2020, 118, 104919. | 
| 23 | ZHOU L ,  BALDACCI R ,  VIGO D , et al.  A multi-depot two-echelon vehicle routing problem with delivery options arising in the last mile distribution[J]. European Journal of Operational Research, 2018, 265 (2): 765- 778. doi: 10.1016/j.ejor.2017.08.011 | 
| 24 | TILK C ,  OLKIS K ,  IRNICH S .  The last-mile vehicle routing problem with delivery options[J]. OR Spectrum, 2021, 43 (4): 877- 904. doi: 10.1007/s00291-021-00633-0 | 
| 25 | DUMEZ D ,  LEHUEDE F ,  PETON O .  A large neighborhood search approach to the vehicle routing problem with delivery options[J]. Transportation Research Part B: Methodological, 2021, 144, 103- 132. doi: 10.1016/j.trb.2020.11.012 | 
| 26 | VOIGT S ,  FRANK M ,  FONTAINE P , et al.  The vehicle routing problem with availability profiles[J]. Transportation Science, 2023, 57 (2): 531- 551. doi: 10.1287/trsc.2022.1182 | 
| 27 | KARELS V C G ,  REI W ,  VEELENTURF L P , et al.  A vehicle routing problem with multiple service agreements[J]. European Journal of Operational Research, 2024, 313 (1): 129- 145. doi: 10.1016/j.ejor.2023.07.029 | 
| 28 | 周鲜成, 周开军, 王莉, 等. 物流配送中的绿色车辆路径模型与求解算法研究综述[J]. 系统工程理论与实践, 2021, 41 (1): 213- 230. | 
| ZHOU X C , ZHOU K J , WANG L , et al. Review of green vehicle routing model and its algorithm in logistics distribution[J]. Systems Engineering-Theory & Practices, 2021, 41 (1): 213- 230. | |
| 29 | ZHANG H F ,  GE H W ,  YANG J L , et al.  Review of vehicle routing problems: models, classifycation and solving algorithms[J]. Archives of Computational Methods in Engineering, 2022, 29, 195- 221. doi: 10.1007/s11831-021-09574-x | 
| 30 | GENDREAU M , POTVIN J Y . Handbook of metaheuristics[M]. Cham: Springer, 2019. | 
| 31 | SOLOMON M M ,  DESROSIERS J .  Time window constrained routing and scheduling problems[J]. Transportation Science, 1988, 22 (1): 1- 13. doi: 10.1287/trsc.22.1.1 | 
| 32 | 仪孝展. 基于改进遗传算法的物流车辆路径规划方法研究与应用[D]. 西安: 西安理工大学, 2018. | 
| YI X Z. Research and application of logistics vehicle routing planning based on improved genetic algorithm[D]. Xi'an: Xi'an University of Technology, 2018. | 
| [1] | 胡春宇, 刘卫东, 于天翔, 周立尧, 冯晨. 基于无人机实时数据多波次任务规划模型分析[J]. 系统工程与电子技术, 2021, 43(3): 747-754. | 
| [2] | 吴传章, 陈伯孝. 间歇非均匀采样转发干扰产生方法研究[J]. 系统工程与电子技术, 2021, 43(1): 1-10. | 
| [3] | 余敏建, 游航航, 韩其松, 杨海燕, 高阳阳. 基于改进烟花算法的空战指挥引导对策生成[J]. 系统工程与电子技术, 2019, 41(12): 2780-2788. | 
| [4] | 刘庆国, 刘新学, 夏维, 郭会军. 多个多弹头在轨武器平台的目标分配优化[J]. 系统工程与电子技术, 2018, 40(5): 1050-1056. | 
| [5] | 姚英彪, 王璇. 面向多核任务调度的混合遗传算法[J]. 系统工程与电子技术, 2015, 37(8): 1928-1935. | 
| [6] | 赵健, 周泓, 梁春华. 求解JLSP问题的遗传禁忌混合优化算法[J]. Journal of Systems Engineering and Electronics, 2012, 34(4): 833-838. | 
| [7] | 张毅, 姜青山, 陈国生. 具有条件风险值的动态火力分配方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 313-316. | 
| [8] | 高勇,何刚,张晓晖. 基于不变矩和禁忌搜索算法的图像识别方法[J]. Journal of Systems Engineering and Electronics, 2010, 32(4): 851-853. | 
| [9] | 陈杰, 易本顺. 集中式无线传感器网络TDMA优化调度方案[J]. Journal of Systems Engineering and Electronics, 2010, 32(1): 200-204. | 
| [10] | 张衡, 花兴来, 许绍杰. 可修复备件系统库存决策仿真优化模型[J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1510-1514. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||