Journal of Systems Engineering and Electronics ›› 2010, Vol. 32 ›› Issue (7): 1509-1512.doi: 10.3969/j.issn.1001506X.2010.07.037

• 软件、算法与仿真 • 上一篇    下一篇

基于蚁群优化的贝叶斯网络学习

高晓光, 赵欢欢, 任佳   

  1. (西北工业大学电子信息学院, 陕西 西安 710072)
  • 出版日期:2010-07-20 发布日期:2010-01-03

Bayesian network learning on algorithm based on ant colony optimization

GAO Xiaoguang, ZHAO Huanhuan, REN Jia   

  1. (School of Electronics and Information, Northwestern Polytechnical Univ., Xi’an 710072, China)
  • Online:2010-07-20 Published:2010-01-03

摘要:

针对贝叶斯网络学习中的混合算法容易缩小搜索空间,同时易陷入局部最优等缺点,提出了基于蚁群优化的贝叶斯网络学习算法。首先应用最大最小父子节点集合算法(maxmin parents and children, MMPC)来构建无向网络的框架,然后利用蚁群优化算法进行评分〖CD*2〗搜索,通过平衡“开发”和“探索”力度来修补搜索空间并确定网络结构中边的方向。最后应用本算法学习逻辑报警还原机理网(a logical alarm reduction mechanism, ALARM),结果显示本算法减少了丢失边的数量,得到了更接近真实结构的贝叶斯网络。

Abstract:

Accordering to the hybrid Bayesian networks learning algorithms which are easy to narrow the search space and fall into local optimum, a Bayesian network learning algorithm based on ant colony optimization is proposed. Firstly, this paper applies maxmin parents and children (MMPC) to construct the framework of the undirected network, and then uses ant colony optimization to scoresearch, by balancing the “exploitation” and “exploration” to repair the search space and determine the direction of edges in the network. Finally applying the algorithm to learn a logical alarm reduction mechanism (ALARM) network shows that it reduces the number of missing edges, and gets closer to the real structure of Bayesian network.