瑞利分布 | $ f(x)=\frac{x}{\sigma^2} \mathrm{e}^{-\frac{x^2}{2 \sigma^2}}$ | $ \hat{\sigma}^2=\frac{1}{2} m(2)$ |
对数正态分布 | $f(x)=\frac{1}{\sqrt{2 \pi \alpha^2 x^2}} \mathrm{e}^{-\frac{(\ln x-\ln \mu)^2}{2 \alpha^2}} $ | $\hat{\alpha}^2=\ln \left[m(2) / m^2(1)\right], \mu=m(1) / \mathrm{e}^{\hat{\sigma}^2 / 2} $ |
韦布尔分布 | $f(x)=\frac{c}{b^c} x^{c-1} e^{-}\left(\frac{x}{b}\right)^{c} $ | $\hat{c}=\operatorname{interp}\left[\varOmega, c, m(2) / m^2(1)\right], \hat{b}=\frac{m(1)}{\varGamma\left(\frac{1}{\hat{c}}+1\right)} $ |
伽马分布 | $ f(x)=\frac{x^{\gamma-1}}{\varGamma(\gamma) \beta^\gamma} \mathrm{e}^{-\frac{x}{\beta}}$ | $ \hat{\beta}=\frac{m(2)-m^2(1)}{m(1)}, \hat{\gamma}=\frac{m(1)}{\hat{\beta}}$ |
K分布 | $f(x)=\frac{2}{\chi \varGamma(\varsigma)}\left(\frac{x}{2 \chi}\right)^{\varsigma} K_{\varsigma-1}\left(\frac{x}{\chi}\right) $ | $ \begin{array}{l}\;\;\;\;\;\;\;\varsigma=\operatorname{interp}\left(x_0, y_0, x_d\right), \chi=\sqrt{\frac{m(2)}{4 \zeta^2}} \\y_0=[0.1, 100], x_0=\frac{\varGamma\left(y_0+1\right) \varGamma\left(y_0\right)}{\varGamma^2\left(y_0+\frac{1}{2}\right) \varGamma^2\left(\frac{3}{2}\right)}\end{array}$ |