基于改进Swin Transformer的舰船目标实例分割算法
|
钱坤, 李晨瑄, 陈美杉, 郭继伟, 潘磊
|
Ship target instance segmentation algorithm based on improved Swin Transformer
|
Kun QIAN, Chenxuan LI, Meishan CHEN, Jiwei GUO, Lei PAN
|
|
表4 算法对比结果
|
Table 4 Algorithm comparison results
|
|
算法 | 主干网络 | mAPsegm/% | AP50segm/% | AP75segm/% | 参数量/MB | FPS | FCN[6] | VGG16 | 62.2 | 79.5 | 69.2 | 134 | 13.3 | Mask R-CNN[5] | ResNet-50 | 69.4 | 89.6 | 77.9 | 110 | 15.0 | Cascade Mask R-CNN[30] | ResNet-50 | 68.7 | 89.4 | 76.3 | 82 | 18.0 | YOLACT++[8] | ResNet-50 | 66.3 | 82.3 | 74.6 | 129 | 32.6 | 基线算法 | Swin-Ting | 73.9 | 90.8 | 87.5 | 86 | 15.3 | 本文算法 | 改进Swin-Ting | 75.4 | 91.3 | 89.4 | 89 | 15.5 |
|
|
|