Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (7): 2446-2455.doi: 10.12305/j.issn.1001-506X.2024.07.26
• Guidance, Navigation and Control • Previous Articles
Weili YUAN1, Xinmin TANG2,*, Junwei GU1
Received:
2023-07-24
Online:
2024-06-28
Published:
2024-07-02
Contact:
Xinmin TANG
CLC Number:
Weili YUAN, Xinmin TANG, Junwei GU. Research on aircraft direction finding based on antenna directionality parameter identification[J]. Systems Engineering and Electronics, 2024, 46(7): 2446-2455.
1 | MARTELLI T , COLONE F , CARDINALI R . DVB-T based passive radar for simultaneous counter drone operations and civil air traffic surveillance[J]. IET Radar, Sonar & Navigation, 2020, 14 (4): 505- 515. |
2 | GABRIELA S, MIHAELA L, FLORIN C, AUGUSTIN S, et al. New air traffic surveillance systems[C]//Proc. of the International Conference of Numerical Analysis and Applied Mathematics, 2022. |
3 | DEJAN K , DRAGAN D , MIRKO D , et al. Air traffic modernization and control: ADS-B system implementation update 2022: a review[J]. University of Belgrade-Faculty of Mechanical Engineering, 2023, 51 (1): 117- 130. |
4 |
ALI B , OCHIENG W , MAJUNDAR A . ADS-B: probabilistic safety assessment[J]. The Journal of Navigation, 2017, 70 (4): 887- 906.
doi: 10.1017/S0373463317000054 |
5 |
CHIOCCHIO S , PERSIA A , SANTUCCI F , et al. Modeling and evaluation of enhanced reception techniques for ADS-B signals in high interference environments[J]. Physical Communication, 2020, 42, 101171.
doi: 10.1016/j.phycom.2020.101171 |
6 | RTCA DO-260B. Minimum operational performance standardsfor 1090 MHz extended squitter automatic dependent surveillance-broadcast(ADS-B) and traffic information services broadcast(TIS-B)[S]. Washington DC: Radio Technical Commission for Aeronautics, 2009. |
7 |
EUIHO K , KEVIN S . Blended secondary surveillance radar solutions to improve air traffic surveillance[J]. Aerospace Science and Technology, 2015, 45, 203- 208.
doi: 10.1016/j.ast.2015.05.018 |
8 | MOHAMMADKARIMI M, RAJAN R T. Cooperative sense and avoid for UAVs using secondary radar[EB/OL]. [2023-06-30]. https://arxiv.org/abs/2306.03046. |
9 | KHOMENKO A, PODDBNYI S, BAKSHEEVA I. Improvement of secondary surveillance radar resilience to active interfe-rences[C]// Proc. of the IEEE Wave Electronics and its Application in Information and Telecommunication Systems, 2019. |
10 | RTCA DO-386. Minimum operational performance standards for airborne collision avoidance system xu (ACAS Xu)[S]. Washington DC: Radio Technical Commission for Aeronautics, 2020. |
11 | LIU Z X, JIANG N, MA Q, et al. Study on the shipboard radar reconnaissance equipment azimuth benchmark method[C]// Proc. of the AOPC Optical Test, Measurement, and Equipment, 2015: 401-407. |
12 | FERNANDES E , DA S , DA B , et al. 2.4~5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement[J]. AEU-International Journal of Electronics and Communications, 2019, 108, 235- 241. |
13 | DUSSOPT L , MEDRAR K , MARNAT L . Millimeter-wave Gaussian-beam transmitarray antennas for quasi-optical MYM s MYM-parameter characterization[J]. IEEE Trans.on Antennas and Propagation, 2019, 68 (2): 850- 858. |
14 | SAIDULU V . Dielectric cover layer thickness effect on rectangular microstrip antenna parameters[J]. i-Manager's Journal on Electronics Engineering, 2021, 11 (4): 8- 17. |
15 | ZHAI Y K , JIANG Z Y , MAI C Y , et al. A3PNet: antijam and accurate antenna parameters measuring network for mobile communication base station using UAV[J]. IEEE Trans.on Instrumentation and Measurement, 2022, 71, 5007515. |
16 |
RAJESWARI P , ANBALAGAN P . Cost effective android-antenna tool (AAT) for the parameter calculation of antenna in android platform[J]. Microprocessors and Microsystems, 2020, 72, 102946.
doi: 10.1016/j.micpro.2019.102946 |
17 |
EXPÓSITO I , SÁNCHEZ M , CUIÑAS I . Uncertainty assessment of a small rectangular anechoic chamber: from design to operation[J]. IEEE Trans.on Antennas and Propagation, 2020, 68 (6): 4871- 4880.
doi: 10.1109/TAP.2020.2969842 |
18 | 郑修鹏, 李进杰, 陈鸿, 等. 全向单脉冲振幅法测向技术研究[J]. 舰船电子对抗, 2023, 46 (1): 51- 54. |
ZHENG X P , LIN J J , CHEN H , et al. Research on omnidirectional single pulse amplitude method direction finding technology[J]. Ship Electronic Countermeasures, 2023, 46 (1): 51- 54. | |
19 |
PRINCE T , ELMANSOURI M , FILIPOVIC D . Cylindrical luneburg lens antenna systems for amplitude-only direction-finding applications[J]. IEEE Trans.on Antennas and Propagation, 2023, 71 (10): 7924- 7932.
doi: 10.1109/TAP.2023.3306638 |
20 |
AHMAD N , NAWAZ H , SHOAIB N , et al. Ambiguity resolution in amplitude comparison-based monopulse direction finding antenna systems[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22 (10): 2605- 2609.
doi: 10.1109/LAWP.2023.3298664 |
21 |
WAN H , LIAO B . Fourth-order direction finding in antenna arrays with partial channel gain/phase calibration[J]. Signal Processing, 2020, 169, 107380.
doi: 10.1016/j.sigpro.2019.107380 |
22 |
LIU L T , YU T . An analysis method for solving ambiguity in direction finding with phase interferometers[J]. Circuits, Systems, and Signal Processing, 2021, 40 (3): 1420- 1437.
doi: 10.1007/s00034-020-01536-1 |
23 | 刘子奇, 臧欣蕊, 贾春, 等. 固定基线约束的低成本GNSS测向方法[EB/OL]. [2023-06-30]. https://doi.org/10.13203/j.whugis20220572. |
LIU Z Q, ZANG X R, JIA C, et al. A low-cost GNSS direction finding method with fixed baseline constraints[EB/OL]. [2023-06-30]. https://doi.org/10.13203/j.whugis20220572. | |
24 |
REN K . Direction finding using a single antenna with blade modulation[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21 (5): 873- 877.
doi: 10.1109/LAWP.2022.3149871 |
25 |
CHEN L , WANG S L , JIANG H , et al. A novel combined estimation method of online full-parameter identification and adaptive unscented particle filter for Li-ion batteries SOC based on fractional-order modeling[J]. International Journal of Energy Research, 2021, 45 (10): 15481- 15494.
doi: 10.1002/er.6817 |
26 | WANG Z T , CHAI J Y , XIANG X D , et al. A novel online parameter identification algorithm designed for deadbeat current control of the permanent-magnet synchronous motor[J]. IEEE Trans.on Industry Applications, 2021, 58 (2): 2029- 2041. |
27 | 向启均. 改进模拟退火优化遗传算法的机器人动力学参数辨识[D]. 长沙: 湖南大学, 2018. |
XIANG Q J. Improved simulated annealing optimization genetic algorithm for robot dynamic parameter identification[D]. Changsha: Hunan University, 2018. | |
28 | 王保民, 齐湛江, 闫瑞翔, 等. 基于随机权重粒子群算法的SCARA机器人动力学参数辨识[J]. 西安交通大学学报, 2021, 55 (9): 20- 27. |
WANG B M , QI Z J , YAN R X , et al. Dynamic parameter identification of SCARA robot based on stochastic weight particle swarm optimization algorithm[J]. Journal of Xi'an Jiaotong University, 2021, 55 (9): 20- 27. | |
29 |
AHEREH T , RANJBAR N , MILAD M , et al. Parameters identification of photovoltaic solar cells using FIPSO-SQP algorithm[J]. Optik, 2023, 283, 170900.
doi: 10.1016/j.ijleo.2023.170900 |
30 | DE L C , LIMON S , TREVIÑO M , et al. Convolutional neural network for parameter identification of a robot[M]. Singapore: Springer Nature Singapore, 2023. |
31 | IQBAL M F , KHALID Z , ZAHID M , et al. Accuracy improvement in amplitude comparison-based passive direction finding systems by adaptive squint selection[J]. IET Radar, Sonar & Navigation, 2020, 14 (5): 662- 668. |
32 | POISEL R . Antenna systems and electronic warfare applications[M]. Norwood: Artech House, 2012. |
33 | LIU C , ZHANG F G , ZHANG H , et al. Optimization of assembly sequence of building components based on simulated annealing genetic algorithm[J]. Alexandria Engineering Journal, 2023, 62, 257- 268. |
34 | LIN S , ASHLOCK J C , ZHAO G , et al. Genetic-simulated annealing optimization for surface wave inversion of shear-wave velocity profiles of geotechnical sites[J]. Computers and Geotechnics, 2023, 160, 105525. |
[1] | Yujie LIU, Kaikai CUI, Wei HAN, Yue LI. Research on departure planning of carrier aircraft based on IPSO [J]. Systems Engineering and Electronics, 2024, 46(4): 1337-1345. |
[2] | Kaikai CUI, Rongwei CUI, Wei HAN, Fang GUO, Yulin WANG, Jie LIU. Carrier aircraft recovery sequencing scheduling technology based on MGP algorithm [J]. Systems Engineering and Electronics, 2023, 45(10): 3192-3206. |
[3] | Kexin BI, Minggong WU, Xiangxi WEN, Wenbin ZHANG, Wenda YANG. Conflict resolution strategy based on flight conflict network and genetic algorithm [J]. Systems Engineering and Electronics, 2023, 45(5): 1429-1440. |
[4] | Chunzheng WANG, Minghua HU, Lei YANG, Zheng ZHAO. Review on air traffic delay prediction [J]. Systems Engineering and Electronics, 2022, 44(3): 863-874. |
[5] | Bing WAN, Wei HAN, Yong LIANG, Fang GUO. Optimization algorithm of carrier-based aircraft sortie departure scheduling [J]. Systems Engineering and Electronics, 2021, 43(12): 3624-3634. |
[6] | Kexin BI, Minggong WU, Wenbin ZHANG, Xiangxi WEN, Kan DU. Modeling and analysis of flight conflict network based onvelocity obstacle method [J]. Systems Engineering and Electronics, 2021, 43(8): 2163-2173. |
[7] | Ang LI, Dangmin NIE, Xiangxi WEN, Zekun WANG, Chengxiu YANG. Operation situation assessment of control system based on interdependent network and SVM [J]. Systems Engineering and Electronics, 2021, 43(5): 1287-1294. |
[8] | Minggong WU, Zelong YE, Xiangxi WEN, Hongjun WANG. Rerouting planning of key navigation sections based on [J]. Systems Engineering and Electronics, 2020, 42(7): 1534-1542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||