Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (7): 2220-2227.doi: 10.12305/j.issn.1001-506X.2024.07.06
• Electronic Technology • Previous Articles
Danni ZHU1,2, Jin MENG1, Bingfang DENG1, Haitao WANG1, Yancheng CUI1,*, Yuzhang YUAN1
Received:2023-03-30
Online:2024-06-28
Published:2024-07-02
Contact:
Yancheng CUI
CLC Number:
Danni ZHU, Jin MENG, Bingfang DENG, Haitao WANG, Yancheng CUI, Yuzhang YUAN. Simulation research on C-band high-efficiency coaxial transit-time oscillator[J]. Systems Engineering and Electronics, 2024, 46(7): 2220-2227.
| 1 |
DENG B F , HE J T , LING J P , et al. Preliminary research of a V-band coaxial relativistic transit-time oscillator with traveling wave output structure[J]. Physics of Plasmas, 2021, 28 (10): 103103.
doi: 10.1063/5.0060186 |
| 2 |
DENG B F , HE J T , LING J P . A coaxial V-band relativistic transit-time oscillator operating in TM02 mode[J]. IEEE Trans. on Plasma Science, 2020, 48 (12): 4350- 4355.
doi: 10.1109/TPS.2020.3039051 |
| 3 |
LING J P , XU W L , HE J T , et al. Experimental research on a gigawatt-class Ku-band coaxial transit-time oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2022, 29, 073105.
doi: 10.1063/5.0092985 |
| 4 |
DENG B F , HE J T , LING J P , et al. A V-band coaxial relativi-stic transit-time oscillator operating in TM02 mode with shallow corrugated output structure[J]. IEEE Electron Device Letters, 2022, 43 (7): 1125- 1128.
doi: 10.1109/LED.2022.3178071 |
| 5 |
DENG B F , HE J T , LING J P , et al. Theoretical analysis and experimental verification of electron beam transmission with low guiding magnetic field in V-band coaxial transit-time oscillator[J]. Physics of Plasmas, 2021, 28 (7): 073102.
doi: 10.1063/5.0042738 |
| 6 |
ZHANG J , ZHANG D , FAN Y W , et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27 (1): 010501.
doi: 10.1063/1.5126271 |
| 7 | XU W L , DENG X B , HE J T , et al. Novel compact and lightweight coaxial C-band transit-time oscillator[J]. Chinese Physics B, 2020, 29 (9): 442- 447. |
| 8 | DENG X B , HE J T , LING J P , et al. A low-magnetic field high-efficiency high-power microwave source with novel diode structure[J]. Advances in Atmospheric Advances, 2020, 10, 115114. |
| 9 |
XIAO R Z , CHEN K , WANG H D , et al. Theoretical calculation and particle-in-cell simulation of a multi-mode relativistic backward wave oscillator operating at low magnetic field[J]. Physics of Plasmas, 2022, 29 (4): 043103.
doi: 10.1063/5.0086938 |
| 10 | FAN Z K , LIU Q X , CHEN D B , et al. Theoretical and experi-mental researches on C-band three-cavity transit-time effect oscillator[J]. Science in China Ser. G Physics, Mechanics & Astronomy, 2004, 47 (3): 310- 329. |
| 11 |
CAO Y , ZHANG J D , HE J T . A low-impedance transit-time oscillator without foils[J]. Physics of Plasmas, 2009, 16 (8): 83102.
doi: 10.1063/1.3195070 |
| 12 |
BARROSO J J . Stepped electric-field profiles in transit-time tubes[J]. IEEE Trans. on Electron Devices, 2005, 52 (5): 872- 877.
doi: 10.1109/TED.2005.845813 |
| 13 |
LING J P , HE J T , ZHANG J D , et al. A Ku-band coaxial relati-vistic transit-time oscillator with low guiding magnetic field[J]. Laser and Particle Beams, 2014, 32 (2): 295- 303.
doi: 10.1017/S0263034614000135 |
| 14 |
YANG C C , MENG J , ZHU D N , et al. Design and simulation of a compact Ku-band RTTO with power divider extraction structure[J]. Physica Scripta, 2021, 96 (12): 125611- 125635.
doi: 10.1088/1402-4896/ac2183 |
| 15 |
WANG H T , ZHANG J , DANG F C , et al. A high power radial Ka-band transit time oscillator with nonuniform extractor[J]. Physica Scripta, 2020, 95 (3): 35503.
doi: 10.1088/1402-4896/ab5291 |
| 16 |
LING J P , ZHANG J D , HE J T , et al. Gigawatt-class microwave generation from a novel Ku-band coaxial transit-time oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2016, 23 (10): 103103.
doi: 10.1063/1.4964483 |
| 17 |
LING J P , HE J T , ZHANG J D , et al. A novel Ku-band relativistic transit-time oscillator with three-cavity extractor and distance-tunable reflector[J]. Physics of Plasmas, 2017, 24 (1): 013103.
doi: 10.1063/1.4973329 |
| 18 |
ZHU D N , CUI Y C , MENG J , et al. A high-efficiency C-band coaxial transit time oscillator with a dual-cavity extractor under low-magnetic fields[J]. Physica Scripta, 2023, 98, 065301.
doi: 10.1088/1402-4896/accd2a |
| 19 | 令钧溥. Ku波段低磁场同轴渡越时间振荡器的研究[D]. 长沙: 国防科学技术大学, 2014. |
| LING J P. Investigation of a Ku-band coaxial transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2014. | |
| 20 |
YANG C C , MENG J , WANG H T , et al. A Ku-band radial transit time oscillator with high power capacity[J]. Japanese Journal of Applied Physics, 2022, 61 (7): 076003.
doi: 10.35848/1347-4065/ac6d95 |
| 21 |
WANG H T , ZHU D N , YUAN Y Z , et al. A high-power Ka-band radial transit time oscillator with over-sized extractor[J]. IEEE Trans. on Electron Devices, 2021, 68 (7): 3562- 3567.
doi: 10.1109/TED.2021.3077198 |
| 22 | YANG C C, WANG H T, MENG J, et al. A high-power and high-efficiency Ku band RTTO with trapezoidal extraction cavity[C]//Proc. of the Photonics and Electromagnetics Research Symposium, 2021: 1378-1383. |
| 23 | YANG C C , MENG J , WANG H T , et al. GW-Level Ku-band compact coaxial TTO with permanent magnet packaging potential[J]. IEEE Trans. on Electron Devices, 2023, (5): 2533- 2539. |
| 24 |
XU W L , HE J T , LING J P . An improved Ku-band TTO with compact solenoid and better plasma-suppressing collector[J]. AIP Advances, 2019, 9 (2): 25126.
doi: 10.1063/1.5085471 |
| 25 | SONG L L , HE J T , LING J P . A novel L-band coaxial transit-time oscillator with tunable frequency[J]. Advances in Atmospheric Advances, 2017, 7 (10): 105302. |
| 26 |
LING J P , HE J T , ZHANG J D , et al. Improved foilless Ku-band transit-time oscillator for generating gigawatt level microwave with low guiding magnetic field[J]. Physics of Plasmas, 2014, 21 (9): 93107.
doi: 10.1063/1.4895797 |
| 27 | 王佳雨. X波段大半径同轴高效率长脉冲相对论振荡器研究[D]. 长沙: 国防科学技术大学, 2018. |
| WANG J Y. Investigation on a large radius and coaxial relative oscillator with high efficiency and long pulse output of X-band[D]. Changsha: National University of Defense Technology, 2018. | |
| 28 | 曹亦兵. 基于渡越辐射新型高功率微波源的研究[D]. 长沙: 国防科学技术大学, 2012. |
| CAO Y B. Investigation of a novel high-power microwave source based on transition radiation effect[D]. Changsha: National University of Defense Technology, 2012. | |
| 29 | 张华. Ku波段低导引磁场过模Cerenkov型高功率微波振荡器研究[D]. 长沙: 国防科学技术大学, 2014. |
| ZHANG H. Investigation on Ku-band overmoded Cerenkov high-power microwave oscillator under low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2014. | |
| 30 |
CAO Y B , HE J T , JANG J D , et al. An oversized X-band transit radiation oscillator[J]. Applied Physics Letters, 2012, 101 (17): 173504.
doi: 10.1063/1.4764550 |
| 31 | 朱丹妮, 张军, 钟辉煌, 等. 冷阴极高阻抗相对论速调管放大器的模拟研究[J]. 国防科技大学学报, 2015, 2, 22- 26. |
| ZHU D N , ZHANG J , ZHONG H H , et al. Simulation of a high impedance relativistic klystron amplifier with a cold ca-thode[J]. National University of Defense Technology, 2015, 2, 22- 26. | |
| 32 | 宋莉莉. Ka波段高功率同轴渡越时间振荡器的研究[D]. 长沙: 国防科技大学, 2018. |
| SONG L L. A Ka-band high power coaxial transit-time oscillator[D]. Changsha: National University of Defense Technology, 2018. | |
| 33 | CHEN H J , LING J P , QIAN B L . A Ku-band coaxial transit-time oscillator with pierce-like cathode under permanent magnet packaging[J]. Advances in Atmospheric Advances, 2018, 8 (11): 115215. |
| [1] | Yude NI, Ling ZOU, Ruihua LIU, Wantong CHEN, Zhe QIN, Kai WANG. C-band navigation signal modulation mode and performance evaluation of BeiDou system [J]. Systems Engineering and Electronics, 2022, 44(12): 3800-3810. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||