Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (5): 1599-1606.doi: 10.12305/j.issn.1001-506X.2024.05.14
• Sensors and Signal Processing • Previous Articles
Hai LI1,*, Zhong TIAN1, Jun QIAN2
Received:
2022-12-31
Online:
2024-04-30
Published:
2024-04-30
Contact:
Hai LI
CLC Number:
Hai LI, Zhong TIAN, Jun QIAN. Hydrometeor classification for radar based on ECOC-balanced random forest[J]. Systems Engineering and Electronics, 2024, 46(5): 1599-1606.
1 | LISCHI S, LUPIDI A, BERIZZI F, et al. X-band full polarized Doppler weather radar return simulation by using propagation-modified ensemble-averaged covariance matrix[C]//Proc. of the International Radar Symposium. Dresden IEEE Press, 2013. |
2 | LISCHI S, LUPIDI A, MARTORELLA M, et al. Advanced polarimetric Doppler weather radar simulator[C]//Proc. of the 15th International IEEE Radar Symposium, 2014. |
3 | ZHANG G . Weather radar polarimetry[M]. Oxford: CRC Press, Inc., 2016. |
4 |
LI Z , ZHANG Y , ZHANG G F , et al. A microphysics-based si-mulator for advanced airborne weather radar development[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (4): 1356- 1373.
doi: 10.1109/TGRS.2010.2076354 |
5 |
LI Z , PERERA S , ZHANG Y , et al. Phased-array radar system simulator (PASIM): development and simulation result assessment[J]. Remote Sensing, 2019, 11 (4): 422.
doi: 10.3390/rs11040422 |
6 | BRINGI V N , CHANDRASEKAR V . Polarimetric Doppler weather radar: principles and applications[M]. Carnbridge: Cambridge University Press, 2001. |
7 |
李海, 白锦, 孙研, 等. 基于修正小波变换插值-TAN的雷达降水粒子分类[J]. 系统工程与电子技术, 2022, 44 (5): 1527- 1535.
doi: 10.12305/j.issn.1001-506X.2022.05.13 |
LI H , BAI J , SUN Y , et al. Radar hydrometeor classification based on modified wavelet transform interpolation-TAN[J]. Systems Engineering and Electronics, 2022, 44 (5): 1527- 1535.
doi: 10.12305/j.issn.1001-506X.2022.05.13 |
|
8 | 覃文娜. 江苏省冰雹发生规律及数值模拟技术研究[D]. 南京: 南京信息工程大学, 2012. |
TAN W N. Hail occurrence regularity and numerical simulation technology in Jiangsu province[D]. Nanjing: Nanjing University of Information Science and Technology, 2012. | |
9 | LI H , FENG K H , GUO M H . Echo simulation of non-spherical ice crystal particles for airborne weather radar[J]. IET Radar, Sonar Navigation, 2022, 17 (2): 277- 294. |
10 | STRAKA J M. Hydrometeor fields in a supercell storm as deduced from dual-polarization radar[C]//Proc. of the 18th Conference on Severe Local Storms, 1996: 551-554. |
11 |
HYANGSUK P , RYZHKOV A V , ZRNI D S , et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: description and application to an MCS[J]. Weather and Forecasting, 2009, 24 (3): 730- 748.
doi: 10.1175/2008WAF2222205.1 |
12 |
HASSAN A S , BOUMAHMOUD A A , BEATRICE F , et al. A new fuzzy logic hydrometeor classification scheme applied to the french X-band, C-band, and S-band polarimetric radars[J]. Journal of Applied Meteorology and Climatology, 2013, 52 (10): 2328- 2344.
doi: 10.1175/JAMC-D-12-0236.1 |
13 | MARZANO F S , SCARANARI D , CELANO M , et al. Hydrometeor classification from dual-polarized weather radar: extending fuzzy logic from S-band to C-band data[J]. Advances in Geosciences, 2006, 7 (6): 109- 114. |
14 | 冯亮, 肖辉, 孙跃. X波段双偏振雷达水凝物粒子相态识别应用研究[J]. 气候与环境研究, 2018, 23 (3): 366- 386. |
FENG L , XIAO H , SUN Y . A study on hydrometeor classification and application based on X-band dual-polarization radar measurements[J]. Climatic and Environmental Research, 2018, 23 (3): 366- 386. | |
15 |
RAUT B A , KONWAR M , MURUGAVEL P , et al. Microphysical origin of raindrop size distributions during the Indian monsoon[J]. Geophysical Research Letters, 2021, 48 (16)
doi: 10.1029/2021GL093581 |
16 |
CHEN Y C , LIU X E , BI K , et al. Hydrometeor classification of winter precipitation in northern china based on multiplatform radar observation system[J]. Remote Sensing, 2021, 13 (24): 5070- 5078.
doi: 10.3390/rs13245070 |
17 |
GRAZIOLI J , TUIA D , BERNE A . Hydrometeor classification from polarimetric radar measurements: a clustering approach[J]. Atmospheric Measurement Techniques, 2015, 8 (1): 149- 170.
doi: 10.5194/amt-8-149-2015 |
18 |
杨淑群, 芮景析, 冯汉中. 支持向量机(SVM)方法在降水分类预测中的应用[J]. 西南农业大学学报(自然科学版), 2006, 28 (2): 252- 257.
doi: 10.3969/j.issn.1673-9868.2006.02.020 |
YANG S Q , RUI J X , FENG H Z . Application of support vector machine (SVM) in rainfall categorical forecast[J]. Journal of Southwest Agricultural University(Natural Science), 2006, 28 (2): 252- 257.
doi: 10.3969/j.issn.1673-9868.2006.02.020 |
|
19 | 李海, 尚金雷, 孙婷逸, 等. 一种基于离散属性BNT的双偏振气象雷达降水粒子分类方法[J]. 电子学报, 2021, 49 (3): 619- 624. |
LI H , SHANG J L , SUN T Y , et al. A BNT hydrometeor classification algorithm for dual-polarization radar[J]. Acta Electronica Sinica, 2021, 49 (3): 619- 624. | |
20 | MARZANO F S, SCARANARI D, MONTOPOLI M, et al. Model-oriented hydrometeor classification and water content estimate using dual-polarized weather radars[C]//Proc. of the Radar Conference, 2008. |
21 |
YANG J , KUN Z , ZHANG G , et al. A Bayesian hydrometeor classification algorithm for C-band polarimetric radar[J]. Remote Sensing, 2019, 11 (16): 1884- 1894.
doi: 10.3390/rs11161884 |
22 |
BECHINI R , CHANDRASEKAR V . A semisupervised robust hydrometeor classification method for dual-polarization radar applications[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32 (1): 22- 47.
doi: 10.1175/JTECH-D-14-00097.1 |
23 | HAIBO H, YANG B, EDWARDO A G, et al. Adasyn: adaptive synthetic sampling approach for imbalanced learning[C]//Proc. of the IEEE International Joint Conference on Neural Networks, 2008: 1322-1328. |
24 |
LIU X Y , WU J X , ZHOU Z H . Exploratory undersampling for class-imbalance learning[J]. IEEE Trans.on Systems, Man, and Cybernetics. Part B, Cybernetics: a publication of the IEEE Systems, Man, and Cybernetics Society, 2009, 39 (2): 539- 550.
doi: 10.1109/TSMCB.2008.2007853 |
25 |
ELREEDY D , ATIYA A F . A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance[J]. Information Sciences, 2019, 505, 32- 64.
doi: 10.1016/j.ins.2019.07.070 |
26 |
HIEN M N , ERIC W C , KATSUARI K . Borderline over-sampling for imbalanced data classification[J]. International Journal of Knowledge Engineering and Soft Data Paradigms, 2011, 3 (1): 4- 21.
doi: 10.1504/IJKESDP.2011.039875 |
27 |
PRINCE M , PRATHAP J M P . An imbalanced dataset and class overlapping classification model for big data[J]. Computer Systems Science and Engineering, 2023, 44 (2): 1009- 1024.
doi: 10.32604/csse.2023.024277 |
28 |
GARCIA V , SANCHEZ J S , MOLLINEDA R A . On the effectiveness of preprocessing methods when dealing with differ-ent levels of class imbalance[J]. Knowledge-Based Systems, 2012, 25 (1): 13- 21.
doi: 10.1016/j.knosys.2011.06.013 |
29 |
PRASETIYOWATI M I , MAULIDEVI N U , SURENDRO K . The accuracy of random forest performance can be improved by conducting a feature selection with a balancing strategy[J]. PeerJ. Computer science, 2022, 8, e1041.
doi: 10.7717/peerj-cs.1041 |
30 |
ASIM Y , MALIK A K , RAZA B , et al. Predicting influential blogger's by a novel, hybrid and optimized case based reasoning approach with balanced random forest using imbalanced data[J]. IEEE Access, 2021, 9, 6836- 6854.
doi: 10.1109/ACCESS.2020.3048610 |
31 |
GUPTA S C , GOEL N . Predictive modeling and analytics for diabetes using hyperparameter tuned machine learning techniques[J]. Procedia Computer Science, 2023, 218, 1257- 1269.
doi: 10.1016/j.procs.2023.01.104 |
[1] | Shiyang HE, Ling WANG, Daiyin ZHU, Jun QIAN. Thunderstorm prediction method based on spatiotemporal memory decoupling RNN [J]. Systems Engineering and Electronics, 2023, 45(11): 3474-3480. |
[2] | Yongxing GAO, Xudong WANG, Ling WANG, Daiyin ZHU, Jun GUO, Fanwang MENG. Weather signal detection for dual polarization weather radar based on RCNN [J]. Systems Engineering and Electronics, 2022, 44(11): 3380-3387. |
[3] | Hai LI, Ze HUYAN, Zhijie MAO. Low-altitude wind-shear velocity ambiguity resolution based on compressed sensing under strong clutter [J]. Systems Engineering and Electronics, 2022, 44(10): 3029-3036. |
[4] | Hai LI, Jin BAI, Yan SUN, Jiawei REN. Radar hydrometeor classification based on modified wavelet transform interpolation-TAN [J]. Systems Engineering and Electronics, 2022, 44(5): 1527-1535. |
[5] | Hai LI, Weijie CHENG, Ruijie XIE. Wind speed estimation of low-altitude wind-shear based on homotopy sparse STAP [J]. Systems Engineering and Electronics, 2022, 44(4): 1174-1181. |
[6] | Hai LI, Zhixin LIU, Weijie CHENG, Zibo ZHUANG, Yi FAN. Low-altitude wind shear wind speed estimation method based on MBMC under sea clutter [J]. Systems Engineering and Electronics, 2020, 42(11): 2481-2487. |
[7] | Hai LI, Di SONG, Ze HUYAN, Qing FENG, Zibo ZHUANG. Wind speed estimation of low-altitude wind-shear based on TDPC-JDL under LFMCW system [J]. Systems Engineering and Electronics, 2020, 42(7): 1504-1509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||