Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (12): 3932-3940.doi: 10.12305/j.issn.1001-506X.2023.12.23
• Systems Engineering • Previous Articles
Licheng ZHU1, Qing SUN1, Junhong DUAN1,*, Min PANG2
Received:
2023-03-25
Online:
2023-11-25
Published:
2023-12-05
Contact:
Junhong DUAN
CLC Number:
Licheng ZHU, Qing SUN, Junhong DUAN, Min PANG. Automatic evaluation method of pilot flight training quality based on maneuver action type recognition[J]. Systems Engineering and Electronics, 2023, 45(12): 3932-3940.
Table 1
Model parameter size"
模块名称 | 输出维度 | 参数数量 |
卷积层(1×7@64) 批标准化 | [64, 1, 7] [64] | 448 |
卷积层2~11(1×3@64) 批标准化2~11 | [64, 64, 3] [64] | 12 288 |
卷积层2~12(1×3@64) 批标准化2~12 | [64, 64, 3] [64] | 12 288 |
卷积层2~21(1×3@128) 批标准化2~21 | [128, 64, 3] [128] | 24 576 |
卷积层2~22(1×3@128) 批标准化2~22 | [128, 128, 3] [128] | 49 152 |
卷积层2~31(1×3@256) 批标准化2~31 | [256, 128, 3] [256] | 98 304 |
卷积层2~32(1×3@256) 批标准化2~32 平均池化 | [256, 256, 3] [256] [256, 128, 1] | 196 608 32 768 |
全连接层 | [6, 195 072] | 1.17e+06 |
Table 4
Evaluation criteria for tactical maneuver indicators"
机动动作 | 评估指标标准 | 优秀 | 良好 | 合格 | 不合格 |
斤斗 | 进入速度(840 km/h) | ±40 | ±80 | ±120 | ±160 |
载荷大小(4.5 g) | ±0.2 | ±0.4 | ±0.6 | ±0.8 | |
顶点速度(300 km/h) | >390 | +60 | +30 | < 300 | |
斜斤斗 | 顶点坡度(35°) | ±3 | ±5 | ±7 | ±10 |
进入速度(840 km/h) | ±40 | ±80 | ±120 | ±160 | |
载荷大小(4.5 g) | ±0.2 | ±0.4 | ±0.6 | ±0.8 | |
顶点速度(300 km/h) | >390 | +60 | +30 | < 300 | |
半滚倒转 | 进入速度(500 km/h) | ±20 | ±40 | ±60 | ±80 |
改出速度(850 km/h) | ±40 | ±80 | ±120 | ±160 | |
半斤斗翻转 | 进入速度(800 km/h) | ±40 | ±80 | ±120 | ±160 |
顶点速度(350 km/h) | >440 | +60 | +30 | < 350 | |
半滚倒转-斤斗 | 该组合动作中半滚倒转阶段与半滚倒转机动动作评估标准一致, 斤斗阶段与斤斗机动动作评估标准一致 | ||||
半滚倒转-半斤斗翻转 | 该组合动作中半滚倒转阶段与半滚倒转机动动作评估标准一致, 半斤斗翻转阶段与半斤斗翻转机动动作评估标准一致 |
1 | 杨俊, 谢寿生. 基于模糊支持向量机的飞机飞行动作识别[J]. 航空学报, 2005, 26 (6): 84- 88. |
YANG J , XIE S S . Fuzzy support vector machines based recognition for aeroplane flight action[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26 (6): 84- 88. | |
2 | TIAN F, ZHANG T, MENG G L, et al. Intelligent recognition of fighter' s maneuver based on fuzzy control algorithm[C]//Proc. of the 4th International Conference on Instrumentation & Measurement, 2014: 548-589. |
3 |
徐西蒙, 杨任农, 于洋, 等. 基于运动分解和H-SVM的空战目标机动识别[J]. 控制与决策, 2020, 35 (5): 1265- 1272.
doi: 10.13195/j.kzyjc.2018.1210 |
XU X M , YANG R N , YU Y , et al. Target maneuver recognition in air combat based on motion decomposition and H-SVM[J]. Control and Decision, 2020, 35 (5): 1265- 1272.
doi: 10.13195/j.kzyjc.2018.1210 |
|
4 |
YANG Z , SUN Z X , PIAO H Y , et al. Online hierarchical re-cognitionn method for target tactical intention in beyond-visual-range air combat[J]. Defence Technology, 2022, 18 (8): 1349- 1361.
doi: 10.1016/j.dt.2022.02.001 |
5 |
WEI Z L , DING D L , ZHOU H , et al. A flight maneuver re-cognition method based on multi-strategy affine canonical time warping[J]. Applied Soft Computing Journal, 2020, 95, 106527.
doi: 10.1016/j.asoc.2020.106527 |
6 |
张建业, 李学仁, 倪世宏. 飞行成绩评定及管理系统[J]. 空军工程大学学报(自然科学版), 2001, 2 (1): 70- 73.
doi: 10.3969/j.issn.1009-3516.2001.01.020 |
ZHANG J Y , LI X R , NI S H . A kind of applied system for assessing and managing flying score[J]. Journal of Air Force Engineering University, 2001, 2 (1): 70- 73.
doi: 10.3969/j.issn.1009-3516.2001.01.020 |
|
7 | LONG Z, XU K J, YIN H, et al. Flight operation quality assessment model based on the fuzzy logic theory[C]//Proc. of the 10th International Conference on Intelligent Systems and Knowledge Engineering, 2016: 99-103. |
8 |
柳忠起, 袁修干, 樊瑜波. 基于BP神经网络的飞行绩效评价模型[J]. 北京航空航天大学学报, 2010, 36 (4): 403- 406.
doi: 10.13700/j.bh.1001-5965.2010.04.010 |
LIU Z Q , YUAN X G , FAN Y B . Pilot performance evaluation model based on BP neural networks[J]. Journal of Beijing University of Aeronautics and Astronautis, 2010, 36 (4): 403- 406.
doi: 10.13700/j.bh.1001-5965.2010.04.010 |
|
9 | 姚裕盛, 徐开俊. 基于BP神经网络的飞行训练品质评估[J]. 航空学报, 2017, 38 (S1): 24- 32. |
YAO Y S , XU K J . Quality assessment of flight training based on BP neural network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (S1): 24- 32. | |
10 | 刘浩, 王昊, 孟光磊, 等. 基于动态贝叶斯网络和模糊灰度理论的飞行训练评估[J]. 航空学报, 2021, 42 (8): 250- 261. |
LIU H , WANG H , MENG G L , et al. Flight training evalu-ation based on dynamic Bayesian networkand fuzzy gray theory[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (8): 250- 261. | |
11 | 李鸿利, 单征, 郭浩然. 基于MDTW的飞行动作识别算法[J]. 计算机工程与应用, 2015, 51 (9): 267- 270. |
LI H L , SHAN Z , GUO H R . Flight action recognition algorithm based on MDTW[J]. Computer Engineering and Applications, 2015, 51 (9): 267- 270. | |
12 | LUGHOFER E . Evolving multi-label fuzzy classifier[J]. Information Sciences, 2022, 597, 1- 23. |
13 | SUN P , YANG L M . Low-rank supervised and semi-supervised multi-metric learning for classification[J]. Knowledge-based Systems, 2022, 236, 107787. |
14 | SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]// Proc. of the IEEE International Conference on Computer Vision, 2017: 843-852. |
15 | LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2287- 2324. |
16 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
17 | HONG F, LIU C W, GUO L J, et al. Underwater acoustic target recognition with ResNet18 on ShipsEar dataset[C]//Proc. of the IEEE 4th International Conference on Electronics Technology, 2021. |
18 | ZHANG K , TANG B P , DENG L , et al. A hybrid attention improved ResNet-based fault diagnosis method of wind turbines gearbox[J]. Measurement, 2021, 179 (10): 109491. |
19 | SONG H, ZHOU Y, JIANG Z Q, et al. ResNet with global and local image features, stacked pooling block, for semantic segmentation[C]//Proc. of the IEEE/CIC International Conference on Communications, 2018. DOI: 10.1109/ICCChina.2018.8641146. |
20 | WU Z , SHEN C , VAN-DEN-HENGEL A . Wider or deeper: revisiting the ResNet model for visual recognition[J]. Pattern Recognition, 2019, 90, 119- 133. |
21 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. DOI: 10.1109/CVPR.2015.7298594. |
22 | 张慧敏. 战机自主与协同飞行训练智能化评估方法研究[D]. 沈阳: 沈阳航空航天大学, 2020. |
ZHANG H M. Research on intelligent evaluation method for autonomous and cooperative flight training of warplanes[D]. Shenyang: Shenyang Aerospace University, 2020. | |
23 | ZHENG Y W , GAO L , LI S , et al. A comprehensive evaluation model for full-chain CCUS performance based on the analytic hierarchy process method[J]. Energy, 2022, 239, 122033. |
24 | SHI Z F, HE W, SHI J, et al. Reliability evaluation of power system with photovoltaic generation based on multi level cross entropy method[C]// Proc. of the International Conference on Renewable Power Generation, 2020. |
25 | CHEN Z , TIAN K . Optimization of evaluation indicators for driver's traffic literacy: an improved principal component ana-lysis method[J]. Sage Open, 2022, 12 (2): 2158244. |
26 | 郭金玉, 张忠彬, 孙庆云. 层次分析法的研究与应用[J]. 中国安全科学学报, 2008, 18 (5): 148- 153. |
GUO J Y , ZHANG Z B , SUN Q Y . Study and applications of analytic hierarchy process[J]. China Safety Science Journal, 2008, 18 (5): 148- 153. | |
27 | DIAKOULAKI D , MAVROTAS G , PAPAYANNAKIS L . Determining objective weights in multiple criteria problems: the critic method[J]. Computers and Operations Research, 1995, 22 (7): 763- 770. |
28 | LIU B , HUANG J J , MCBEAN E , et al. Risk assessment of hybrid rain harvesting system and other small drinking water supply systems by game theory and fuzzy logic modeling[J]. The Science of the Total Environment, 2020, 708 (3): 134436. |
29 | MASTERS D, LUSCHI C. Revisiting small batch training for deep neural networks[EB/OL]. [2023-03-10]. https://arxiv.org/pdf/1804.07612.pdf. |
30 | LOSHCHILOV I, HUTTER F. Fixing weight decay regularization in Adam[EB/OL]. [2023-03-10]. https://arxiv.org/abs/1711.05101v1. |
31 | SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958. |
[1] | Yulin TANG, Houpu LI, Weidong ZHANG, Shaofeng BIAN, Guojun ZHAI, Min LIU, Xiaoping ZHANG. Lightweight DETR-YOLO method for detecting shipwreck target in side-scan sonar [J]. Systems Engineering and Electronics, 2022, 44(8): 2427-2436. |
[2] | Jiali FAN, Shaobing TIAN, Kui HUANG, Xingdong ZHU. Multi-scale object detection algorithm for aircraft carrier surface based on Faster R-CNN [J]. Systems Engineering and Electronics, 2022, 44(1): 40-46. |
[3] | PANG Ce, HUANG Shucai, LIU Jinchang, ZHAO Wei. Multi-sensor cross cueing algorithm basing on the game theory [J]. Systems Engineering and Electronics, 2017, 39(8): 1684-1690. |
[4] | LIU Ai-peng, FU Kun, ZHANG Li-li, YOU Gong-jian, LIU Zhong. Maneuvering target recognition of high resolution SAR images based on multi-scale feature [J]. Journal of Systems Engineering and Electronics, 2010, 32(6): 1161-1166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||