Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (10): 3321-3328.doi: 10.12305/j.issn.1001-506X.2023.10.37
• Communications and Networks • Previous Articles
Bowei QIN, Lei JIANG, Hua XU, Weiyu NIU
Received:
2021-10-27
Online:
2023-09-25
Published:
2023-10-11
Contact:
Bowei QIN
CLC Number:
Bowei QIN, Lei JIANG, Hua XU, Weiyu NIU. Open-set recognition algorithm for modulation signal based on RE-GAN[J]. Systems Engineering and Electronics, 2023, 45(10): 3321-3328.
Table 2
Comparison with results of different algorithms"
算法 | 网络参数 | 模型乘/加次数 | 运行时间/h | 闭集识别平均分类准确率 | 开集识别平均分类准确率 |
Softmax | G: 866 88 | G: 172 045 | 训练: 1.67 | 0.941 | - |
D: 260 837 | D: 530 118 | 测试: 0.03 | (±0.63) | - | |
Openmax[ | 654 527 | 1 276 481 | 训练: 1.20 | 0.803 | 0.845 |
测试: 0.02 | (±0.92) | (±0.65) | |||
G-Openmax[ | G: 112 647 | G: 228 724 | 训练: 1.93 | 0.887 | 0.896 |
D: 334 658 | D: 667 852 | 测试: 0.07 | (±0.74) | (±0.37) | |
OLTR[ | 867 439 | 1 674 892 | 训练: 2.18 | 0.894 | 0.905 |
测试: 0.06 | (±0.43) | (±0.77) | |||
RE-GAN | G: 86 688 | G: 172 045 | 训练: 1.80 | 0.938 | 0.934 |
D: 280 841 | D: 560 722 | 测试: 0.04 | (±0.71) | (±0.68) |
15 | PATEL M, WANG X Y, MAO S W. Data augmentation with conditional GAN for automatic modulation classification[C]//Proc. of the 2nd ACM Workshop on Wireless Security and Machine Learning, 2020. |
16 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]//Proc. of the Conference and Workshop on Neural Information Processing Systems, 2014: 2672-2680. |
17 | BENDALE A, BOULT T. Towards open-set deep networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1563-1572. |
18 | GE Z Y, DEMYANOV S, CHEN Z T, et al. Generative openmax for multi-class open set classification[C]//Proc. of the British Machine Vision Conference, 2017. |
19 | NEAL L, OLSON M, FERN X, et al. Open-set learning with counterfactual images[C]//Proc. of the European Conference on Computer Vision, 2018. |
20 | RUDD E , JAIN L P , SCHEIRER W J , et al. The extreme va-lue machine[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2018, 40 (3): 762- 768. |
21 | LUCIC M, KURACH K, MICHALSKI M, et al. Are GANs created equal? A large-scale study[C]//Proc. of the Conference and Workshop on Neural Information Processing Systems, 2018. |
22 | TANG B , TU Y , ZHANG Z Y , et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, 6, 15713- 15722. |
23 | YOSHIHASHI R, SHAO W, KAWAKAMI R, et al. Classification-reconstruction learning for open-set recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
1 | 郝云飞, 刘章孟, 郭福成, 等. 基于生成对抗网络的信号调制方式的开集识别[J]. 系统工程与电子技术, 2019, 41 (11): 2619- 2624. |
HAO Y F , LIU Z M , GUO F C , et al. Open-set recognition of signal modulation based on generative adversarial networks[J]. Systems Engineering and Electronics, 2019, 41 (11): 2619- 2624. | |
2 |
HAN Y S , WU T Y , CHEN P N , et al. A low-complexity maximum-likelihood decoder for tail-biting convolutional codes[J]. IEEE Trans.on Communications, 2018, 66 (5): 1859- 1870.
doi: 10.1109/TCOMM.2018.2790935 |
3 |
CHO B J , LEE J M , PARK H M . A beam-forming algorithm based on maximum likelihood of a complex Gaussian distribution with time-varying variances for robust speech recognition[J]. IEEE Signal Processing Letters, 2019, 26 (9): 1398- 1402.
doi: 10.1109/LSP.2019.2932848 |
4 |
胡国兵, 吴珊珊, 杨忠, 等. LFM/BPSK混合调制信号盲处理结果可信性评估: 一种简化的似然比算法[J]. 电子学报, 2019, 47 (9): 1891- 1897.
doi: 10.3969/j.issn.0372-2112.2019.09.011 |
HU G B , WU S S , YANG Z , et al. Credibility evaluation of blind processing results of LFM/BPSK mixed modulation signals: a simplified likelihood ratio algorithm[J]. Acta Electronica Sinica, 2019, 47 (9): 1891- 1897.
doi: 10.3969/j.issn.0372-2112.2019.09.011 |
|
5 |
ABDELBAR M , TRANTER W H , BOSE T . Cooperative cumulants-based modulation classification in distributed networks[J]. IEEE Trans.on Cognitive Communications and Networking, 2018, 4 (3): 446- 461.
doi: 10.1109/TCCN.2018.2824326 |
6 | 李红光, 郭英, 眭萍, 等. 基于时频能量谱纹理特征的跳频调制方式识别[J]. 通信学报, 2019, 40 (10): 20- 29. |
LI H G , GUO Y , SUI P , et al. Recognition of frequency hopping modulation based on texture features of time-frequency energy spectrum[J]. Journal of Communications, 2019, 40 (10): 20- 29. | |
7 | 张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42 (9): 2208- 2215. |
ZHANG T Q , FAN C C , GE W Y , et al. Modulation recognition algorithm of MIMO signal based on ICA and feature extraction[J]. Journal of Electronics and Information, 2020, 42 (9): 2208- 2215. | |
8 |
RAJENDRAN S , MEERT W , GIUSTINIANO D , et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Trans.on Cognitive Communications and Networking, 2018, 4 (3): 433- 445.
doi: 10.1109/TCCN.2018.2835460 |
9 | O'SHEA T J, CORGAN J, CLANCY T C, et al. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226. |
10 | 张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 41 (11): 12- 21. |
ZHANG S C , LIN Y , TU Y , et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal of Communications, 2020, 41 (11): 12- 21. | |
11 | 安泽亮, 张天骐, 马宝泽, 等. 基于一维CNN的多入多出OSTBC信号协作调制识别[J]. 通信学报, 2021, 42 (7): 84- 94. |
AN Z L , ZHANG T Q , MA B Z , et al. Cooperative modulation recognition of multiple-input multiple-output OSTBC signal based on one-dimensional CNN[J]. Journal of Communications, 2021, 42 (7): 84- 94. | |
12 | 肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43 (8): 2300- 2307. |
XIAO Y H , WANG L , GUO Y X . Modulation type recognition of radar signal based on denoising convolutional neural network[J]. Journal of Electronics and Information, 2021, 43 (8): 2300- 2307. | |
13 | O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179. |
14 | LI M X, LIU G Y, LI S T, et al. Radio classify generative adversarial networks: a semi-supervised method for modulation recognition[C]//Proc. of the IEEE 18th International Confe-rence on Communication Technology, 2018: 669-672. |
[1] | Shiyan PANG, Jingjing HAO, Lining XING, Xu TAN. Weakly supervised domain adaptation algorithm for building extraction from remote sensing images [J]. Systems Engineering and Electronics, 2023, 45(6): 1616-1623. |
[2] | Li CHEN, Zihan FANG, Liquan MEI. DSS signal generation algorithm based on GAN [J]. Systems Engineering and Electronics, 2023, 45(5): 1544-1552. |
[3] | Haoran ZENG, Yunwen FENG, Cheng LU, Weihuang PAN. Spare parts consumption forecast method based on improved generative adversarial network for domestic civil aircraft [J]. Systems Engineering and Electronics, 2023, 45(10): 3132-3138. |
[4] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[5] | Rongxiang LIU, Lin WU, Zhige XIE, Honglin LIU. Auxiliary situation analysis for air defense system based on generative adversarial network [J]. Systems Engineering and Electronics, 2022, 44(8): 2522-2529. |
[6] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[7] | Jiahua XU, Xiaokuan ZHANG, Shuyu ZHENG, Binfeng ZONG, Jingwei ZHANG. Attribute scattering center extraction based on improved orthogonal matching pursuit algorithm [J]. Systems Engineering and Electronics, 2021, 43(8): 2076-2082. |
[8] | HAO Yunfei, LIU Zhangmeng, GUO Fucheng, ZHANG Min. Open-set recognition of signal modulation based on generative adversarial networks [J]. Systems Engineering and Electronics, 2019, 41(11): 2619-2624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||