Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (4): 1239-1246.doi: 10.12305/j.issn.1001-506X.2023.04.34
• Reliability • Previous Articles
Tiejun JIANG1, Junke WANG1,2,*
Received:
2022-07-11
Online:
2023-03-29
Published:
2023-03-28
Contact:
Junke WANG
CLC Number:
Tiejun JIANG, Junke WANG. Equipment failure probability prediction model based on Dirichlet distribution[J]. Systems Engineering and Electronics, 2023, 45(4): 1239-1246.
Table 1
Working hours of 170 replacement devices"
时间区间 | 工作时间 | |||||
(0, 1] | — | — | — | — | — | — |
(1, 2] | — | — | — | — | — | — |
(2, 3] | 2.1 | 2.4 | 2.6 | — | — | — |
(3, 4] | 3.3 | 3.8 | — | — | — | — |
(4, 5] | 4.3 | 4.6 | 4.9 | — | — | — |
(5, 6] | 5.1 | 5.4 | 5.5 | 5.6 | 5.8 | — |
(6, 7] | 6.3 | 6.5 | 6.6 | 6.9 | — | — |
(7, 8] | 7.1 | 7.2 | 7.2 | 7.5 | 7.6 | 7.8 |
7.9 | — | — | — | — | — | |
(8, 9] | 8.2 | 8.4 | 8.8 | 8.9 | 8.9 | — |
(9, 10] | 9.2 | 9.2 | 9.5 | 9.8 | — | — |
(10, 11] | 10.1 | 10.3 | 10.3 | 10.4 | 10.6 | 10.8 |
10.8 | 10.9 | — | — | — | — | |
(11, 12] | 11.1 | 11.1 | 11.3 | 11.3 | 11.3 | 11.5 |
11.5 | 11.5 | 11.6 | 11.6 | 11.7 | 11.8 | |
11.8 | 11.9 | 11.9 | — | — | — | |
(12, 13] | 12.3 | 12.4 | 12.7 | 12.7 | — | — |
(13, 14] | 13.1 | 13.2 | 13.2 | 13.2 | 13.2 | 13.2 |
13.5 | 13.5 | 13.6 | 13.6 | 13.7 | 13.7 | |
13.7 | 13.8 | 13.8 | 13.8 | 13.8 | 13.9 | |
13.9 | 13.9 | — | — | — | — | |
(14, 15] | 14.2 | 14.3 | 14.3 | 14.3 | 14.5 | 14.5 |
14.5 | 14.5 | 14.6 | 14.6 | 14.7 | 14.7 | |
14.7 | 14.8 | 14.8 | 14.8 | 14.9 | — | |
(15, 16] | 15.4 | 15.7 | 15.7 | 15.8 | — | — |
(16, 17] | 16.1 | 16.2 | 16.3 | 16.3 | 16.4 | 16.4 |
16.5 | 16.5 | 16.5 | 16.6 | 16.6 | 16.7 | |
16.8 | 16.9 | 16.9 | 16.9 | — | — | |
(17, 18] | 17.2 | 17.2 | 17.3 | 17.3 | 17.4 | 17.4 |
17.6 | 17.6 | 17.6 | 17.7 | 17.7 | 17.7 | |
17.8 | 17.8 | 17.8 | 17.9 | 17.9 | 17.9 | |
(18, 19] | 18.1 | 18.3 | 18.4 | 18.5 | 18.6 | 18.6 |
18.7 | 18.8 | 18.9 | 18.9 | — | — | |
(19, 20] | 19.1 | 19.2 | 19.2 | 19.2 | 19.2 | 19.3 |
19.3 | 19.3 | 19.4 | 19.4 | 19.5 | 19.5 | |
19.5 | 19.5 | 19.6 | 19.6 | 19.6 | 19.7 | |
19.7 | 19.8 | 19.8 | 19.8 | 19.9 | 20 | |
20 | — | — | — | — | — |
Table 4
Expected value of the posterior failure probability"
时间 | 概率 | 时间 | 概率 | |
1 | 0.002 777 778 | 11 | 0.047 222 222 | |
2 | 0.002 777 778 | 12 | 0.086 111 111 | |
3 | 0.019 444 444 | 13 | 0.025 000 000 | |
4 | 0.013 888 889 | 14 | 0.113 888 889 | |
5 | 0.019 444 444 | 15 | 0.097 222 222 | |
6 | 0.030 555 556 | 16 | 0.025 000 000 | |
7 | 0.025 000 000 | 17 | 0.091 666 667 | |
8 | 0.041 666 667 | 18 | 0.102 777 778 | |
9 | 0.030 555 556 | 19 | 0.058 333 333 | |
10 | 0.025 000 000 | 20 | 0.141 666 667 |
1 | 司小胜, 胡昌华. 数据驱动的设备剩余寿命预测原理及应用[M]. 北京: 国防工业出版社, 2016. |
SI X S , HU C H . Principle and application of data-driven equipment remaining life prediction[M]. Beijing: National Defense Industry Press, 2016. | |
2 | LESER P E. Probabilistic prognostics and health management for fatigue-critical components using high-fidelity models[D]. North Carolina: North Carolina State University, 2017. |
3 | ASSAF R. Prognostics and health management for multi-component systems[D]. San Francisco: University of Salford, 2018. |
4 | 胡昌华, 樊红东, 王兆强. 设备剩余寿命预测与最优维修决策[M]. 北京: 国防工业出版社, 2018. |
HU C H , FAN H D , WANG Z Q . Equipment remaining life prediction and optimal maintenance decision[M]. Beijing: National Defense Industry Press, 2018. | |
5 | TSUI K L , CHEN N , ZHOU Q , et al. Prognostics and health management: a review on data driven approaches[J]. Mathematical Problems in Engineering, 2015, 2015 (8): 793161. |
6 | MISHRA M. Prognostics and health management of engineering systems for operation and maintenance optimisation[D]. Luleå, Sweden: Luleå University of Technology, 2018. |
7 |
CAO X G , LI P F , MING S . Remaining useful life prediction-based maintenance decision model for stochastic deterioration equipment under data-driven[J]. Sustainability, 2021, 13 (15): 8548.
doi: 10.3390/su13158548 |
8 |
ARONIS K P , MAGOU I , DEKKER R , et al. Inventory control of spare parts using a Bayesian approach: a case study[J]. European Journal of Operational Research, 2004, 154 (3): 730- 739.
doi: 10.1016/S0377-2217(02)00837-8 |
9 | 赵惠文, 王金干, 朱根标. 基于贝叶斯的航材后续备件预测模型[J]. 微电子学与计算机, 2004, 21 (9): 104- 106. |
ZHAO H W , WANG J G , ZHU G B . A predictive model of the following spare parts based on Bayes[J]. Microelectronics & Computer, 2004, 21 (9): 104- 106. | |
10 | 宋国强, 陈超, 许玲, 等. 贝叶斯在地铁备件库存预测中的应用研究[J]. 装备制造技术, 2008, (8): 156- 158. |
SONG G Q , CHEN C , XU L , et al. Research on the application of Bayes in the prediction of subway spare parts inventory[J]. Equipment Manufacturing Technology, 2008, (8): 156- 158. | |
11 |
WALTER G , ASLETT L J M , COOLEN F P A . Bayesian nonparametric system reliability using sets of priors[J]. International Journal of Approximate Reasoning, 2017, 80, 67- 80.
doi: 10.1016/j.ijar.2016.08.005 |
12 |
HUNG Y C , CHEN W C . Simulation of some multivariate distributions related to the Dirichlet distribution with application to Monte Carlo simulations[J]. Communications in Statistics-Simulation and Computation, 2017, 46 (6): 4281- 4296.
doi: 10.1080/03610918.2015.1115066 |
13 | 周建英, 王飞跃, 曾大军. 分层Dirichlet过程及其应用综述[J]. 自动化学报, 2011, 34 (4): 389- 407. |
ZHOU J Y , WANG F Y , ZENG D J . Hierarchical Dirichlet processes and their applications: a survey[J]. Acta Automatica Sinica, 2011, 34 (4): 389- 407. | |
14 | 周志敏, 高申勇. 分层Dirichlet过程原理及应用综述[J]. 计算机应用与软件, 2014, 31 (8): 1- 5. 1-5, 41 |
ZHOU Z M , GAO S Y . A suvey on hierarchical dirichlet process pinciple and its applications[J]. Computer Applications and Software, 2014, 31 (8): 1- 5. 1-5, 41 | |
15 |
XIA Y M , LIU Y G , GOU J W . Dirichlet process and its developments: a survey[J]. Frontiers of Mathematics in China, 2022, 17 (1): 79- 115.
doi: 10.1007/s11464-022-1004-3 |
16 |
WAAL D D , COETZER R , MERWE S V D . Classification of multiple Dirichlet observations under a multinomial model[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 150, 51- 57.
doi: 10.1016/j.chemolab.2015.10.012 |
17 |
BARGER K , BUNGE J . Bayesian estimation of the number of species using noninformative priors[J]. Biometrical Journal, 2008, 50 (6): 1064- 1076.
doi: 10.1002/bimj.200810445 |
18 |
HE J J , WANG W , HUANG M , et al. Bayesian inference under small sample sizes using general noninformative priors[J]. Mathematics, 2021, 9 (21): 2810.
doi: 10.3390/math9212810 |
19 | SAPUTRO D R S , AMALIA F , WIDYANINGSIH P , et al. Parameter estimation of multivariate multiple regression model using Bayesian with non-informative Jeffreys' prior distribution[J]. Journal of Physics: Series, 2018, 1022 (1): 012002. |
20 | LI M M , SUN H F , PENG L Y . Fisher-Rao geometry and Jeffreys prior for Pareto distribution[J]. Communications in Statistics-Theory and Methods, 2020, 51 (6): 1895- 1910. |
21 | DOS S T R , FRANCO G C . Inference for the hyperparameters of structural models under classical and bayesian erspectives: a comparison study[J]. Communications in Statistics-Simulation and Computation, 2010, 39 (9): 1671- 1689. |
22 | STRACHAN R W . Bayesian inference in cointegrated I (2) systems: a generalization of the triangular model[J]. Econometric Reviews, 2007, 26 (2-4): 439- 468. |
23 | 茆诗松, 汤银才. 贝叶斯统计[M]. 北京: 中国统计出版社, 2012. |
MAO S S , TANG Y C . Bayesian statistics[M]. Beijing: China Statistics Press, 2012. | |
24 | GELMAN A , CARLIN J B , STERN H S , et al. Bayesian data analysis[M]. Beijing: China Machine Press, 2016. |
25 | 袁园, 付兴方, 吴佳康. 基于平均备件保障概率的备件库存优化模型研究[J]. 舰船电子工程, 2018, 38 (10): 156- 159. |
YUAN Y , FU X F , WU J K . Optimization model on inventory based on average support probability of spare part[J]. Ship Electronic Engineering, 2018, 38 (10): 156- 159. | |
26 | 薛辉, 刘广宇, 刘铁林, 等. 基于作战任务的备件保障概率分配及其需求量预测模型[J]. 装甲兵工程学院学报, 2018, 32 (6): 22- 27. |
XUE H , LIU G Y , LIU T L , et al. Spare parts support probability distribution and demand forecasting model based on combat mission[J]. Journal of Academy of Armored Force Engineering, 2018, 32 (6): 22- 27. | |
27 | 吴喜之. 贝叶斯数据分析[M]. 北京: 中国人民大学出版社, 2020. |
WU X Z . Bayesian data analysis[M]. Beijing: China Renmin University Press, 2020. | |
28 | 宋兆理, 贾祥, 郭波, 等. 基于贝叶斯融合与仿真的系统剩余寿命预测[J]. 系统工程与电子技术, 2021, 43 (6): 1706- 1713. |
SONG Z L , JIA X , GUO B , et al. Remaining useful life prediction of system based on Bayesian fusion and simulation[J]. Systems Engineering and Electronics, 2021, 43 (6): 1706- 1713. | |
29 | 王玉龙, 彭文成, 董志明, 等. 考虑节点失效的异构仿真网络可靠性蒙特卡罗模拟[J]. 系统工程与电子技术, 2020, 42 (8): 1873- 1880. |
WANG Y L , PENG W C , DONG Z M , et al. Reliability evaluation of heterogeneous simulation network with imperfect vertice using Mont Carlo simulation[J]. Systems Engineering and Electronics, 2020, 42 (8): 1873- 1880. | |
30 | CHEN X G . A novel reliability estimation method of complex network based on Monte Carlo[J]. Cluster Computing, 2017, 20 (2): 1063- 1073. |
31 | ZOALFAKAR S H , EL-BADAWI R E . Reliability prediction of on-board subsystem satellite by Monte Carlo methodology[J]. IOP Conference Series: Materials Science and Engineering, 2019, 610, 012058. |
32 | ROSS S M. 应用随机过程概率模型导论[M]. 龚光鲁, 译. 北京: 人民邮电出版社, 2016. |
ROSS S M. Introduction to probabilistic models of applied stochastic processes[M]. GONG G L, Trans. Beijing: Posts and Telecommunications Press, 2016. |
[1] | Mengya WANG, Yuqing LI, Linman LI, Wei WU, Ershun PAN, Ran LIU. Joint decision-making of AGV battery spare parts and charger configuration in automated terminal [J]. Systems Engineering and Electronics, 2023, 45(4): 1072-1081. |
[2] | Yunwen FENG, Junyu CHEN, Cheng LU. Research on civil aircraft spare parts multi-region support network model [J]. Systems Engineering and Electronics, 2022, 44(5): 1553-1561. |
[3] | Li XU, Minzhi RUAN, Hua LI. Method of fill rate evaluation and demand calculation for lognormal component commonality [J]. Systems Engineering and Electronics, 2022, 44(4): 1417-1423. |
[4] | Chao YANG, Xingming HOU, Haifeng QIN, Xiaowei CHEN. Variety determination of spare parts for space equipment based on the relationship of limited advantages [J]. Systems Engineering and Electronics, 2022, 44(2): 584-591. |
[5] | Wei JIANG, Wen SHENG, Wei QI, Shihua LIU. Survey on maintenance decision of large-scale phased array radar's T/R module [J]. Systems Engineering and Electronics, 2022, 44(1): 127-138. |
[6] | Cheng WANG, Jianxin XU, Lianyu LI, Hongjun WANG, Zhenming ZHANG. Optimization of spare parts allocation under the constraint of system reliability [J]. Systems Engineering and Electronics, 2021, 43(1): 279-284. |
[7] | Guixiang FANG, Yuejin TAN, Mu ZHANG, Xiaodong BU, Jun ZHANG. Evaluation of relative contribution rate of missile weapon system-of-systems based on combat ring [J]. Systems Engineering and Electronics, 2020, 42(8): 1734-1739. |
[8] | Yadong WANG, Quan SHI, Wei XIA, Cai CHEN. Structure optimization of spare parts supply network based on hyper heuristic algorithm [J]. Systems Engineering and Electronics, 2020, 42(3): 620-629. |
[9] | Qiang WANG, Xisheng JIA, Zhonghua CHENG, Shuangchuan WANG, Yunfei MA. Classification of spare parts based on improved local preserving projection in wartime [J]. Systems Engineering and Electronics, 2020, 42(1): 133-140. |
[10] | YANG Jianhua, HAN Mengying. Joint optimization of spare parts supply-demand for k /N (G ) system under condition-based maintenance [J]. Systems Engineering and Electronics, 2019, 41(9): 2148-2156. |
[11] | LU Cheng, XU Tingxue, WANG Hong. Joint optimization decision of equipment condition based maintenance and spare parts inventory [J]. Systems Engineering and Electronics, 2019, 41(7): 1560-1567. |
[12] | ZHAI Yali, ZHANG Zhihua, LI Guangyu. Operational readiness model based on limited spare [J]. Systems Engineering and Electronics, 2019, 41(5): 1043-1048. |
[13] | FENG Yunwen, LIU Kuijian, XUE Xiaofeng, LIU Yuchang. Joint optimization of redundancy level and spare parts for redundant system based on Markov process [J]. Systems Engineering and Electronics, 2019, 41(4): 919-928. |
[14] | WANG Yadong, SHI Quan, ZHANG Fang, YOU Zhifeng, XIA Wei. Multi-stage spare parts supply optimization based on dynamic evolutionary algorithm [J]. Systems Engineering and Electronics, 2019, 41(11): 2514-2523. |
[15] | ZHANG Xinbo, WANG Naichao, XIAO Boping, MA Lin给出了综合考虑系统结构、库存备件量和故障件维修周转等因素影响下的系统可用度计算模型。将由并串混联系统和备件组成的广义系统按功能划分为工作系统与库存系统两个子系统, 通过引入备件平均到达率反映库存系统对工作系统的影响, 并据此分别建立备件充足与缺货时的工作系统状态转移关系。利用二项分布表征期望备件短缺数的概率分布函数以计算库存系统备件的缺货概率, 进而根据全概率公式计算得到系统可用度。示例表明:所提模型针对单部件串联系统所得结果比已有模型更为精确, 其次, 在库存备件量及维修周转时间的影响下, 多部件子系统串联时并不比单部件串联时的可用度高, 且可用度曲线随着库存量的增加并不是严格单调递增的凸曲线。. Availability modeling of parallel-series system under influence of spare parts and maintenance turnover [J]. Systems Engineering and Electronics, 2019, 41(1): 223-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||