Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (4): 1032-1039.doi: 10.12305/j.issn.1001-506X.2023.04.12
• Sensors and Signal Processing • Previous Articles
Dongdong ZHANG, Chunping WANG, Qiang FU
Received:
2021-04-19
Online:
2023-03-29
Published:
2023-03-28
Contact:
Dongdong ZHANG
CLC Number:
Dongdong ZHANG, Chunping WANG, Qiang FU. Ship target detection in SAR image based on feature-enhanced network[J]. Systems Engineering and Electronics, 2023, 45(4): 1032-1039.
Table 3
Setup and results of validation test"
方法 | SSDD | |||||
TP | FP | FN | P | R | AP | |
YOLOv3 | 438 | 37 | 41 | 0.922 1 | 0.914 4 | 0.864 1 |
YOLOv3+I-Darknet-53 | 442 | 50 | 37 | 0.936 4 | 0.922 7 | 0.927 6 |
YOLOv3+4Layers | 456 | 52 | 23 | 0.897 6 | 0.952 0 | 0.932 8 |
YOLOv3+MFPN | 443 | 32 | 36 | 0.932 6 | 0.924 8 | 0.935 1 |
YOLOv3+MSA | 450 | 34 | 29 | 0.929 6 | 0.939 5 | 0.902 3 |
YOLO-MDM | 453 | 33 | 26 | 0.932 1 | 0.945 7 | 0.950 2 |
Table 4
Detection results of different network models"
方法 | 主干网络 | SSDD | ||
P | R | AP | ||
YOLOv3 | Darknet-53 | 0.922 1 | 0.914 4 | 0.864 1 |
YOLOv4 | Darknet-53 | 0.884 2 | 0.975 3 | 0.971 1 |
Faster R-CNN | ResNet-50 | 0.729 0 | 0.814 2 | 0.772 3 |
SSD | Mobilenet-v1 | 0.980 8 | 0.525 9 | 0.524 5 |
YOLO-MDM | I-Darknet-53 | 0.932 1 | 0.945 7 | 0.950 2 |
1 | 刘洁瑜, 赵彤, 刘敏. 基于RetinaNet的SAR图像舰船目标检测[J]. 湖南大学学报(自然科学版), 2020, 47 (2): 85- 91. |
LIU J Y , ZHAO T , LIU M . Ship target detection in SAR image based on RetinaNet[J]. Journal of Hunan University (Natural Science Edition), 2020, 47 (2): 85- 91. | |
2 |
韩子硕, 王春平, 付强, 等. 基于超密集特征金字塔网络的SAR图像舰船检测[J]. 系统工程与电子技术, 2020, 42 (10): 2214- 2222.
doi: 10.3969/j.issn.1001-506X.2020.10.09 |
HAN Z S , WANG C P , FU Q , et al. Ship detection in SAR images based on super dense feature pyramid networks[J]. Systems Engineering and Electronics, 2020, 42 (10): 2214- 2222.
doi: 10.3969/j.issn.1001-506X.2020.10.09 |
|
3 |
WANG C L , BI F K , ZHANG W P , et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (4): 529- 533.
doi: 10.1109/LGRS.2017.2654450 |
4 |
ZHAO Z , JI K F , XING X W , et al. Ship surveillance by integration of space-borne SAR and AIS-review of current research[J]. Journal of Navigation, 2014, 67 (1): 177- 189.
doi: 10.1017/S0373463313000659 |
5 |
FINGAS M F , BROWN C E . Review of ship detection from airborne platforms[J]. Canadian Journal of Remote Sensing, 2001, 27 (4): 379- 385.
doi: 10.1080/07038992.2001.10854880 |
6 | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Artificial Neural Network, 2017, 60 (6): 84- 90. |
7 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
8 | GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448. |
9 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proc. of the 28th International Conference on Neural Information Processing Systems, 2015: 91-99. |
10 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |
11 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37. |
12 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017: 318-327. |
13 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. |
14 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525. |
15 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2021-04-10]. https://arxiv.org/abs/1804.02767. |
16 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944. |
17 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proc. of the 31st AAAI Conference on Artificial Intelligence, 2017: 4278-4284. |
18 | LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN[C]//Proc. of the SAR in Big Data Era: Models, Methods and Applications, 2017. |
19 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
20 | XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987-5995. |
21 | HUANG G, LIU Z, VAN D M L, et al. Densely connected convolutional networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269. |
22 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768. |
23 | 刘杰平, 温竣文, 梁亚玲. 基于多尺度注意力导向网络的单目图像深度估计[J]. 华南理工大学学报(自然科学版), 2020, 48 (12): 52- 62. |
LIU J P , WEN J W , LIANG Y L . Monocular image depth estimation based on multi-scale attention oriented networl[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48 (12): 52- 62. | |
24 | 刘元宁, 吴迪, 朱晓冬, 等. 基于YOLOv3改进的用户界面组件检测算法[J]. 吉林大学学报(工学版), 2021, 51 (3): 1026- 1033. |
LIU Y N , WU D , ZHU X D , et al. User interface components detection algorithm based on improved YOLOv3[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51 (3): 1026- 1033. |
[1] | Yunpu ZHANG, Ganlin SHAN, Yan HUANG, Qiang FU. Multiple mobile sensors scheduling method for ground target detection and tracking considering blind zone [J]. Systems Engineering and Electronics, 2023, 45(2): 453-464. |
[2] | Yu XIAO, Zhenghong DENG, Zhan ZHANG. Waveform design based on two-stage mutual information for multi-target detection [J]. Systems Engineering and Electronics, 2022, 44(9): 2736-2742. |
[3] | Xiang LIU, Tianyao HUANG, Yimin LIU. Distributed target detection for frequency agile radars [J]. Systems Engineering and Electronics, 2022, 44(6): 1833-1838. |
[4] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[5] | Wenxiao WEI, Jieyu LIU, Qiang SHEN, Cheng LI. Feature fusion small target detection algorithm based on human eye view-point map [J]. Systems Engineering and Electronics, 2022, 44(4): 1120-1127. |
[6] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[7] | Xiaoya JIA, Hongqiao WANG, Yadan YANG, Zhongma CUI, Bin XIONG. Anchor free SAR image ship target detection method based on the YOLO framework [J]. Systems Engineering and Electronics, 2022, 44(12): 3703-3709. |
[8] | Chunling XUE, Fei CAO, Qing SUN, Jianqiang QIN, Xiaowei FENG. Sea-surface weak target detection based on multi-feature information fusion [J]. Systems Engineering and Electronics, 2022, 44(11): 3338-3345. |
[9] | Tao JIN, Di ZHU, Jieying HE, Wenyu WANG. Study on the characteristics of high terahertz band atmospheric background radiation observed from satellites [J]. Systems Engineering and Electronics, 2022, 44(10): 3003-3011. |
[10] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
[11] | Shufeng GONG, Weijun LONG, De BEN, Minghai PAN. Adaptive fuzzy CFAR detection fusion algorithm for netted radar [J]. Systems Engineering and Electronics, 2022, 44(1): 100-107. |
[12] | Wei YANG, Yongxiang LIU, Yaowen FU, Xiang LI. Robust radar target detection method based on continuous belief function theory [J]. Systems Engineering and Electronics, 2021, 43(9): 2463-2469. |
[13] | Bin WANG, Guoyu WANG. Instantaneous coastline automatic extraction algorithm for SAR images based on improved deep learning network [J]. Systems Engineering and Electronics, 2021, 43(8): 2108-2115. |
[14] | Qian MA, Huanxin ZOU, Meilin LI, Fei CHENG, Shitian HE. Super pixel cooperative segmentation algorithm for bi-temporal SAR image based on SNIC [J]. Systems Engineering and Electronics, 2021, 43(5): 1198-1209. |
[15] | Dou SUN, Shiqi XING, Haifeng GAO, Bo PANG, Yongzhen LI, Xuesong WANG. 3D sparse imaging for non-uniformly sampled SAR based on feature enhancement [J]. Systems Engineering and Electronics, 2021, 43(4): 901-910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||