Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (3): 921-930.doi: 10.12305/j.issn.1001-506X.2023.03.34
• Reliability • Previous Articles Next Articles
Yan MA1, Jianjun WANG1,*, Zebiao FENG2
Received:
2022-03-04
Online:
2023-02-25
Published:
2023-03-09
Contact:
Jianjun WANG
CLC Number:
Yan MA, Jianjun WANG, Zebiao FENG. Bayesian modeling and optimization of robust parametric design with non-normal response[J]. Systems Engineering and Electronics, 2023, 45(3): 921-930.
Table 1
Results of resistivity test studies"
试验次数 | 设计因子 | 响应电阻率 | |||
剂量 | 时间 | 厚度 | 温度 | ||
1 | -1 | -1 | -1 | -1 | 193.4 |
2 | 1 | -1 | -1 | -1 | 247.6 |
3 | -1 | 1 | -1 | -1 | 168.2 |
4 | 1 | 1 | -1 | -1 | 205.0 |
5 | -1 | -1 | -1 | 1 | 303.4 |
6 | 1 | -1 | -1 | 1 | 339.9 |
7 | -1 | 1 | -1 | 1 | 226.3 |
8 | 1 | 1 | -1 | 1 | 208.3 |
9 | -1 | -1 | 1 | -1 | 220.0 |
10 | 1 | -1 | 1 | -1 | 256.4 |
11 | -1 | 1 | 1 | -1 | 165.7 |
12 | 1 | 1 | 1 | -1 | 203.5 |
13 | -1 | -1 | 1 | 1 | 285.0 |
14 | 1 | -1 | 1 | 1 | 268.0 |
15 | -1 | 1 | 1 | 1 | 169.1 |
16 | 1 | 1 | 1 | 1 | 208.5 |
Table 2
Effect of variance variation of noise factor on optimization results"
方差 | 均方误差 | 符合性概率 |
0.06 | 3 273.948 0 | 0.997 3 |
0.08 | 4 728.055 0 | 0.976 3 |
0.10 | 6 830.148 0 | 0.936 5 |
0.12 | 9 788.466 0 | 0.880 3 |
0.14 | 13 897.020 0 | 0.817 8 |
0.16 | 19 566.700 0 | 0.757 3 |
0.18 | 27 370.330 0 | 0.706 2 |
0.20 | 38 108.290 0 | 0.657 0 |
6 |
HE Z , ZHU P F , PARK S H . A robust desirability function method for multi-response surface optimization considering mo-del uncertainty[J]. European Journal of Operational Research, 2012, 221 (1): 241- 247.
doi: 10.1016/j.ejor.2012.03.009 |
7 |
MYERS R H , MONTGOMERY D C , VINING G G , et al. Response surface methodology: a retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36 (1): 53- 77.
doi: 10.1080/00224065.2004.11980252 |
8 |
MYERS R H . Response surface methodology-current status and future directions[J]. Journal of Quality Technology, 1999, 31 (1): 30- 44.
doi: 10.1080/00224065.1999.11979891 |
9 |
KLEIJNEN J P C . Regression and Kriging metamodels with their experimental designs in simulation: a review[J]. European Journal of Operational Research, 2017, 256 (1): 1- 16.
doi: 10.1016/j.ejor.2016.06.041 |
10 |
MYERS R H , MONTGOMERY D C , VINING G G , et al. Response surface methodology: a retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36 (1): 53- 77.
doi: 10.1080/00224065.2004.11980252 |
11 |
MYERS R H , KIM Y , GRIFFITHS K L . Response surface methods and the use of noise variables[J]. Journal of Quality Technology, 1997, 29 (4): 429- 440.
doi: 10.1080/00224065.1997.11979794 |
12 |
汪建均, 马义中. 基于GLM的双响应曲面法及其稳健设计[J]. 系统工程与电子技术, 2012, 34 (11): 2306- 2311.
doi: 10.3969/j.issn.1001-506X.2012.11.20 |
WANG J J , MA Y Z . Dual response surface methodology based on generalized linear models and its application on robust design[J]. Systems Engineering and Electronics, 2012, 34 (11): 2306- 2311.
doi: 10.3969/j.issn.1001-506X.2012.11.20 |
|
13 |
MYERS W R , BRENNEMAN W A , MYERS R H . A dual-response approach to robust parameter design for a generalized linear model[J]. Journal of Quality Technology, 2005, 37 (2): 130- 138.
doi: 10.1080/00224065.2005.11980311 |
14 | PARK I , GRANDHI R V . A Bayesian statistical method for quantifying model form uncertainty and two model combination methods[J]. Reliability Engineering & System Safety, 2014, 129, 46- 56. |
15 | JIANG F , TAN M H Y , TSUI K L . Multiple-target robust design with multiple functional outputs[J]. ⅡSE Transactions, 2021, 53 (9): 1052- 1066. |
16 | LI A D , HE Z , ZHANG Y . Robust multi-response optimization considering location effect, dispersion effect, and model uncertainty using hybridization of NSGA-Ⅱ and direct multi-search[J]. Computers & Industrial Engineering, 2022, 169, 108247. |
17 | HE Y , HE Z , LEE D H , et al. Robust fuzzy programming method for MRO problems considering location effect, dispersion effect and model uncertainty[J]. Computers & Industrial Engineering, 2017, 105, 76- 83. |
18 |
WANG J J , MAO T , TU Y L . Simultaneous multi-response optimisation for parameter and tolerance design using Bayesian modelling method[J]. International Journal of Production Research, 2021, 59 (8): 2269- 2293.
doi: 10.1080/00207543.2020.1730011 |
19 | 汪建均, 屠雅楠, 马义中. 结合SUR与因子效应原则的多响应质量设计[J]. 管理科学学报, 2020, 23 (12): 12- 29. |
WANG J J , TU Y N , MA Y Z . Multi-response quality design integrating SUR models with factorial effect principles[J]. Journal of Management Sciences in China, 2020, 23 (12): 12- 29. | |
20 | WANG J J , MA Y Z , OUYANG L H , et al. Bayesian modeling and optimization for multi-response surfaces[J]. Computers & Industrial Engineering, 2020, 142, 106357. |
21 |
HASSANI H , KHODAYGAN S , GHADERI A . Bayesian reliabi-lity-based robust design optimization of mechanical systems under both aleatory and epistemic uncertainties[J]. Engineering Optimization, 2022,
doi: 10.1080/0305215X.2021.2014826 |
22 |
WAN L Q , OUYANG L H , ZHOU T Y , et al. An improved reliability-based robust design optimization method using Bayesian seemingly unrelated regression and multivariate loss function[J]. Structural and Multidisciplinary Optimization, 2022, 65 (2)
doi: 10.1007/s00158-022-03172-6 |
23 |
FENG Z B , WANG J J , MA Y Z , et al. Robust parameter design based on Gaussian process with model uncertainty[J]. International Journal of Production Research, 2021, 59 (9): 2772- 2788.
doi: 10.1080/00207543.2020.1740344 |
24 |
ZHOU X J , MA Y Z , TU Y L , et al. Ensemble of surrogates for dual response surface modeling in robust parameter design[J]. Quality and Reliability Engineering International, 2013, 29 (2): 173- 197.
doi: 10.1002/qre.1298 |
25 |
PETERSON J J . A posterior predictive approach to multiple response surface optimization[J]. Journal of Quality Technology, 2004, 36 (2): 139- 153.
doi: 10.1080/00224065.2004.11980261 |
1 | 汪建均. 基于广义线性模型的变量选择与稳健参数设计[D]. 南京: 南京理工大学, 2012. |
WANG J J. Variable selection and robust parameter design based on generalized linear models[D]. Nanjing: Nanjing University of Science and Technology, 2012. | |
2 | VANLI O A , ZHANG C , WANG B . An adaptive Bayesian app-roach for robust parameter design with observable time series noise factors[J]. ⅡE Transactions, 2013, 45 (4): 374- 390. |
3 | TAN M H Y , NG S H . Estimation of the mean and variance response surfaces when the means and variances of the noise variables are unknown[J]. ⅡE Transactions, 2009, 41 (11): 942- 956. |
4 | MYERS R H , KHURI A I , VINING G . Response surface alternatives to the Taguchi robust parameter design approach[J]. The American Statistician, 1992, 46 (2): 131- 139. |
5 |
NAIR V N , ABRAHAM B , MACKAY J , et al. Taguchi's parameter design: a panel discussion[J]. Technometrics, 1992, 34 (2): 127- 161.
doi: 10.1080/00401706.1992.10484904 |
26 |
MIRO-QUESADA G , DEL CASTILLO E , PETERSON J J . A Bayesian approach for multiple response surface optimization in the presence of noise variables[J]. Journal of Applied Statistics, 2004, 31 (3): 251- 270.
doi: 10.1080/0266476042000184019 |
27 |
汪建均, 马义中, 欧阳林寒, 等. 多响应稳健参数设计的贝叶斯建模与优化[J]. 管理科学学报, 2016, 19 (2): 85- 94.
doi: 10.3969/j.issn.1007-9807.2016.02.008 |
WANG J J , MA Y Z , OUYANG L H , et al. Bayesian modeling and optimization of multi-response robust parameter design[J]. Journal of Management Sciences in China, 2016, 19 (2): 85- 94.
doi: 10.3969/j.issn.1007-9807.2016.02.008 |
|
28 |
OUYANG L H , PARK C , MA Y Z , et al. Bayesian hierarchical modelling for process optimisation[J]. International Journal of Production Research, 2021, 59 (15): 4649- 4669.
doi: 10.1080/00207543.2020.1769873 |
29 | OUYANG L H , ZHU S C , YE K Y , et al. Robust Bayesian hie-rarchical modeling and inference using scale mixtures of normal distributions[J]. ⅡSE Transactions, 2022, 54 (7): 659- 671. |
30 | YANIKOGLUI , DEN HERTO D , KLEIJNEN J P C . Robust dual-response optimization[J]. ⅡE Transactions, 2015, 48 (3): 298- 312. |
31 | ZHOU X J , JIANG T , ZHOU Z H , et al. Sequential ∈-support vector regression based online robust parameter design[J]. Computers & Industrial Engineering, 2021, 158, 107391. |
32 | JIANG F , TAN M H Y . Shifted log loss Gaussian process model for expected quality loss prediction in robust parameter design[J]. Quality Technology & Quantitative Management, 2021, 18 (5): 527- 551. |
33 |
YANG S J , WANG J J , MA Y . Online robust parameter design considering observable noise factors[J]. Engineering Optimization, 2021, 53 (6): 1024- 1043.
doi: 10.1080/0305215X.2020.1770744 |
34 |
NELDER J A , WEDDERBURN R W M . Generalized linear models[J]. Journal of the Royal Statistical Society: Series A, 1972, 135 (3): 370- 384.
doi: 10.2307/2344614 |
35 | DEY D K , GHOSH S K , MALLICK B K . Generalized linear mo-dels: a Bayesian perspective[M]. New York: CRC Press, 2000. |
36 | GILKS W R , WILD P . Adaptive rejection sampling for Gibbs sampling[J]. Journal of the Royal Statistical Society: Series C, 1992, 41 (2): 337- 348. |
37 |
IBRAHIM J G , LAUD P W . On Bayesian analysis of generali-zed linear models using Jeffreys's prior[J]. Journal of The American Statistical Association, 1991, 86 (416): 981- 986.
doi: 10.1080/01621459.1991.10475141 |
38 |
BERGQUIST B , VANHATALO E , NORDENVAAD M L . A Bayesian analysis of unreplicated two-level factorials using effects sparsity, hierarchy, and heredity[J]. Quality Engineering, 2011, 23 (2): 152- 166.
doi: 10.1080/08982112.2011.553760 |
39 | NTZOUFRAS I. Bayesian modeling using WinBUGS[M]. New Jersey: John Wiley & Sons, 2009. |
40 |
DELLAPORTAS P , FORSTER J J , NTZOUFRAS I . On Bayesian model and variable selection using MCMC[J]. Statistics and Computing, 2002, 12 (1): 27- 36.
doi: 10.1023/A:1013164120801 |
41 |
MYERS R H , MONTGOMERY D C . A tutorial on generalized linear models[J]. Journal of Quality Technology, 1997, 29 (3): 274- 291.
doi: 10.1080/00224065.1997.11979769 |
[1] | Huahua WANG, Yanshan LI, Zhihao ZHANG, Jiamin LIANG. Decentralized signal detection algorithm based on expectation propagation [J]. Systems Engineering and Electronics, 2022, 44(11): 3564-3570. |
[2] | Cuihong ZHAI, Jianjun WANG, Zebiao FENG. Robust parameter design of multiple responses based on Gaussian process model [J]. Systems Engineering and Electronics, 2021, 43(12): 3683-3693. |
[3] | Zhenya WU, Jianping HAO, Hanqing CHEN, Jieqiao LI, Jishuai TAN. Review on research of equipment mean time to repair demonstration methods [J]. Systems Engineering and Electronics, 2020, 42(12): 2931-2943. |
[4] | FENG Zebiao, WANG Jianjun. Multi-response robust parameter design based on covariant characteristics of model responses [J]. Systems Engineering and Electronics, 2019, 41(9): 2048-2057. |
[5] | YANG Shijuan, WANG Jianjun. Robust parameter design based on hierarchical Bayesian model [J]. Systems Engineering and Electronics, 2019, 41(10): 2293-2303. |
[6] | GU Xiaoguang, MA Yizhong, LIU Jian, WANG Jianjun. Robust parameter design for multivariate quality characteristics based on process capability index with individual observations [J]. Systems Engineering and Electronics, 2017, 39(2): 362-368. |
[7] | ZHANG Liu-yang, MA Yi-zhong, WANG Jian-jun, WU Feng. Robust parameter design and optimization for dynamic multi-response with the skewness characteristics [J]. Systems Engineering and Electronics, 2016, 38(2): 339-346. |
[8] | LEI Hua-jun,QIN Kai-yu. Bayesian method for determination of testability demonstration test scheme [J]. Journal of Systems Engineering and Electronics, 2012, 34(12): 2612-2616. |
[9] | WANG Jian-jun, MA Yi-zhong. Dual response surface methodology based on generalized linear models and its application on robust design [J]. Journal of Systems Engineering and Electronics, 2012, 34(11): 2306-2311. |
[10] | PENG Bao-hua,ZHOU Jing-lun,SUN Quan,FENG Jing,JIN Guang. Residual lifetime prediction of products based on fusion of degradation data and lifetime data [J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1073-. |
[11] | HONG Dongpao,MA Xiaobing,ZHAO Yu. Integrated reliability assessment based on proportional risk model [J]. Journal of Systems Engineering and Electronics, 2010, 32(10): 2132-2135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||