| 1 | TREES H L V .  Optimum array processing: part Ⅳ of detection, estimation, and modulation theory[M]. New York: Wiley, 2002. | 
																													
																							| 2 | WANG Y ,  ZHANG Y ,  TIAN Z , et al.  Super-resolution channel estimation for arbitrary arrays in hybrid millimeter-wave massive MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13 (5): 947- 960. doi: 10.1109/JSTSP.2019.2937632
 | 
																													
																							| 3 | WANG M J ,  GAO F F ,  JIN S , et al.  An overview of enhanced massive MIMO with array signal processing techniques[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13 (5): 886- 901. doi: 10.1109/JSTSP.2019.2934931
 | 
																													
																							| 4 | STOICA P ,  BABU P ,  LI J .  SPICE: a sparse covariance-based estimation method for array processing[J]. IEEE Trans.on Signal Processing, 2011, 59 (2): 629- 638. doi: 10.1109/TSP.2010.2090525
 | 
																													
																							| 5 | KAY S M .  Fundamentals of statistical signal processing[M]. Englewood Cliffs: Prentice-Hall, 1993. | 
																													
																							| 6 | STOICA P ,  MOSES R L .  Spectral analysis of signals[M]. Upper Saddle River: Pearson/Prentice-Hall, 2005. | 
																													
																							| 7 | YANG Z, LI J, STOICA P, et al. Sparse methods for direction-of-arrival estimation[M]//CHELLAPPA R, THEODORIDIS S. Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering. Oxford: Academic Press, 2018. | 
																													
																							| 8 | BELLONI A ,  CHERNOZHUKOV V ,  WANG L .  Square-root lasso: pivotal recovery of sparse signals via conic programming[J]. Bio-metrika, 2011, 98 (4): 791- 806. | 
																													
																							| 9 | TAN T ,  ROBERTS W ,  LI J , et al.  Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE Trans.on Signal Processing, 2011, 59 (3): 1088- 1101. doi: 10.1109/TSP.2010.2096218
 | 
																													
																							| 10 | JI S H ,  XUE Y ,  CARIN L .  Bayesian compressive sensing[J]. IEEE Trans.on Signal Processing, 2008, 56 (6): 2346- 2356. doi: 10.1109/TSP.2007.914345
 | 
																													
																							| 11 | STOICA P ,  BABU P ,  LI J .  New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Trans.on Signal Processing, 2011, 59 (1): 35- 47. doi: 10.1109/TSP.2010.2086452
 | 
																													
																							| 12 | ZHANG Q ,  ABEIDA H ,  XUE M , et al.  Fast implementation of sparse iterative covariance-based estimation for source localization[J]. The Journal of the Acoustical Society of America, 2012, 131 (2): 1249- 1259. doi: 10.1121/1.3672656
 | 
																													
																							| 13 | STOICA P ,  ZACHARIAH D ,  LI J .  Weighted SPICE: a uni-fying approach for hyperparameter-free sparse estimation[J]. Digital Signal Processing, 2014, 33, 1- 12. doi: 10.1016/j.dsp.2014.06.010
 | 
																													
																							| 14 | ZHU H ,  LEUS G ,  GIANNAKIS G .  Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Trans.on Signal Processing, 2011, 59 (5): 2002- 2016. doi: 10.1109/TSP.2011.2109956
 | 
																													
																							| 15 | YANG Z ,  XIE L H ,  ZHANG C S .  Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Trans.on Signal Processing, 2013, 61 (1): 38- 43. doi: 10.1109/TSP.2012.2222378
 | 
																													
																							| 16 | WANG Q L ,  ZHAO Z Q ,  CHEN Z , et al.  Grid evolution method for DOA estimation[J]. IEEE Trans.on Signal Processing, 2018, 66 (9): 2374- 2383. doi: 10.1109/TSP.2018.2814998
 | 
																													
																							| 17 | MA Y N ,  CAO X B ,  WANG X R , et al.  Multi-source off-grid DOA estimation with single snapshot using non-uniform linear arrays[J]. Signal Processing, 2021, 189, 108- 238. | 
																													
																							| 18 | YANG Z ,  XIE L H .  Enhancing sparsity and resolution via reweighted atomic norm minimization[J]. IEEE Trans.on Signal Processing, 2016, 64 (4): 995- 1006. doi: 10.1109/TSP.2015.2493987
 | 
																													
																							| 19 | WAGNER M, GERSTOFT P, PARK Y. Gridless DOA estimation via alternating projections[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 4215-4219. | 
																													
																							| 20 | MAHATA K ,  HYDER M M .  Frequency estimation from arbitrary time samples[J]. IEEE Trans.on Signal Processing, 2016, 64 (21): 5634- 5643. doi: 10.1109/TSP.2016.2600507
 | 
																													
																							| 21 | WAGNER M ,  PARK Y ,  GERSTOFT P .  Gridless DOA estimation and Root-MUSIC for non-uniform linear arrays[J]. IEEE Trans.on Signal Processing, 2021, 69, 2144- 2157. doi: 10.1109/TSP.2021.3068353
 | 
																													
																							| 22 | YANG Z ,  XIE L H ,  ZHANG C S .  A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Trans.on Signal Processing, 2014, 62 (19): 4959- 4973. doi: 10.1109/TSP.2014.2339792
 | 
																													
																							| 23 | YANG Z ,  XIE L H .  On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Trans.on Signal Processing, 2015, 63 (12): 3139- 3153. doi: 10.1109/TSP.2015.2420541
 | 
																													
																							| 24 | CHEN T ,  SHI L ,  YU Y Z .  Gridless DOA estimation with finite rate of innovation reconstruction based on symmetric Toe-plitz covariance matrix[J]. EURASIP Journal on Advances in Signal Processing, 2020, 2020 (1): 44- 59. doi: 10.1186/s13634-020-00701-7
 | 
																													
																							| 25 | ABRAMOVICH Y I ,  SPENCER N K ,  GOROKHOV A Y .  Positive-definite toeplitz completion in DOA estimation for nonuniform linear antenna arrays. Ⅱ. partially augmentable arrays[J]. IEEE Trans.on Signal Processing, 1999, 47 (6): 1502- 1521. doi: 10.1109/78.765119
 | 
																													
																							| 26 | BOYD S ,  VANDENBERGHE L .  Convex optimization[M]. Cambridge: Cambridge University Press, 2004. | 
																													
																							| 27 | GRANT M, BOYD S. CVX: Matlab software for disciplined convex programming, Version 2.0[EB/OL]. [2022-02-24]. http://cvxr.com/cvx. | 
																													
																							| 28 | COVER T M ,  THOMAS J A .  Elements of information theory[M]. Hoboken: Wiley, 2006. | 
																													
																							| 29 | ADALI T ,  SCHREIER P J ,  SCHARF L L .  Complex-valued signal processing: the proper way to deal with impropriety[J]. IEEE Trans.on Signal Processing, 2011, 59 (11): 5101- 5125. doi: 10.1109/TSP.2011.2162954
 | 
																													
																							| 30 | ADALI T ,  HAYKIN S .  Adaptive signal processing: next gene-ration solutions[M]. Hoboken: Wiley, 2010. |