Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (2): 313-335.doi: 10.12305/j.issn.1001-506X.2023.02.01
• Electronic Technology •
Ye ZHANG, Yi HOU, Kewei OUYANG, Shilin ZHOU
Received:2021-04-06
															
							
															
							
															
							
																	Online:2023-01-13
															
							
																	Published:2023-02-04
															
						Contact:
								Yi HOU   
																					CLC Number:
Ye ZHANG, Yi HOU, Kewei OUYANG, Shilin ZHOU. Survey of univariate sequence data classification methods[J]. Systems Engineering and Electronics, 2023, 45(2): 313-335.
| 1 | 吴子龙, 陈红, 雷迎科, 等.  基于堆栈式LSTM网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2020, 42 (12): 2915- 2923. doi: 10.3969/j.issn.1001-506X.2020.12.30 | 
| WU Z L ,  CHEN H ,  LEI Y K , et al.  Communication emitter individual identification based on stacked LSTM network[J]. Systems Engineering and Electronics, 2020, 42 (12): 2915- 2923. doi: 10.3969/j.issn.1001-506X.2020.12.30 | |
| 2 | 孙艺聪, 田润澜, 王晓峰, 等. 基于改进CLDNN的辐射源信号识别[J]. 系统工程与电子技术, 2021, 43 (1): 42- 47. | 
| SUN Y C , TIAN R L , WANG X F , et al. Emitter signal recognition based on improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43 (1): 42- 47. | |
| 3 | 孙世岩, 张钢, 田福庆, 等.  多输入混合深度学习网络的健康因子构建方法[J]. 系统工程与电子技术, 2020, 42 (10): 2390- 2398. doi: 10.3969/j.issn.1001-506X.2020.10.30 | 
| SUN S Y ,  ZHANG G ,  TIAN F Q , et al.  Health indicator construction method of multi-input hybrid deep learning network[J]. Systems Engineering and Electronics, 2020, 42 (10): 2390- 2398. doi: 10.3969/j.issn.1001-506X.2020.10.30 | |
| 4 | RUIZ A P ,  FLYNN M ,  LARGE J , et al.  The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2021, 35 (2): 401- 449. doi: 10.1007/s10618-020-00727-3 | 
| 5 | FAWAZ H I ,  FORESTIER G ,  WEBER J , et al.  Deep learning for time series classification: a review[J]. Data Mining and Knowledge Discovery, 2019, 33 (4): 917- 963. doi: 10.1007/s10618-019-00619-1 | 
| 6 | BAGNALL A ,  LINES J ,  BOSTROM A , et al.  The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Know-ledge Discovery, 2017, 31 (3): 606- 660. doi: 10.1007/s10618-016-0483-9 | 
| 7 | 李文, 邓升, 段妍, 等.  时间序列预测与深度学习: 文献综述与应用实例[J]. 计算机应用与软件, 2020, 37 (10): 64- 70. doi: 10.3969/j.issn.1000-386x.2020.10.011 | 
| LI W ,  DENG S ,  DUAN Y , et al.  Time series forecasting and deep learning: literature review and empirical example[J]. Computer Applications and Software, 2020, 37 (10): 64- 70. doi: 10.3969/j.issn.1000-386x.2020.10.011 | |
| 8 | MAHMOUD A, MOHAMMED A. A survey on deep learning for time-series forecasting[M]//Machine learning and big data analytics paradigms: analysis, applications and challenges. Cham: Springer, 2021: 365-392. | 
| 9 | PANG G S , SHEN C H , CAO L B , et al. Deep learning for anomaly detection: a review[J]. ACM Computing Surveys, 2021, 54 (2): 1- 38. | 
| 10 | 丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报, 2020, 31 (3): 726- 747. | 
| DING X O , YU S J , WANG M X , et al. Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Software, 2020, 31 (3): 726- 747. | |
| 11 | 胡珉, 白雪, 徐伟, 等. 多维时间序列异常检测算法综述[J]. 计算机应用, 2020, 40 (6): 1553- 1564. | 
| HU M , BAI X , XU W , et al. Review of anomaly detection algorithms for multidimensional time series[J]. Journal of Computer Applications, 2020, 40 (6): 1553- 1564. | |
| 12 | ESLING P , AGON C . Time-series data mining[J]. ACM Computing Surveys, 2012, 45 (1): 1- 34. | 
| 13 | DAU H A ,  BAGNALL A ,  KAMGAR K , et al.  The UCR time series archive[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (6): 1293- 1305. doi: 10.1109/JAS.2019.1911747 | 
| 14 | FALOUTSOS C ,  RANGANATHAN M ,  MANOLOPOULOS Y .  Fast subsequence matching in time-series databases[J]. ACM Sigmod Record, 1994, 23 (2): 419- 429. doi: 10.1145/191843.191925 | 
| 15 | YI B, FALOUTSOS C. Fast time sequence indexing for arbitrary Lp norms[C]//Proc. of the 26th International Conference on Very Large Data Bases, 2000: 385-394. | 
| 16 | DAS G, GUNOPULOS D, MANNILA H. Finding similar time series[C]//Proc. of the European Symposium on Principles of Data Mining and Knowledge Discovery, 1997: 88-100. | 
| 17 | VLACHOS M, KOLLIOS G, GUNOPULOS D. Discovering similar multidimensional trajectories[C]//Proc. of the 18th International Conference on Data Engineering, 2002: 673-684. | 
| 18 | CHEN L, ÖZSU M T, ORIA V. Robust and fast similarity search for moving object trajectories[C]//Proc. of the ACM SIGMOD International Conference on Management of Data, 2005: 491-502. | 
| 19 | CHEN L, NG R. On the marriage of Lp-norms and edit distance[C]//Proc. of the 30th International Conference on Very Large Data Bases, 2004: 792-803. | 
| 20 | STEFAN A , ATHITSOS V , DAS G . The move-split-merge metric for time series[J]. IEEE Trans.on Knowledge and Data Engineering, 2012, 25 (6): 1425- 1438. | 
| 21 | BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//Proc. of the 3rd International Conference on Knowledge Discovery and Data Mining, 1994: 359-370. | 
| 22 | SALVADOR S ,  CHAN P .  Toward accurate dynamic time warping in linear time and space[J]. Intelligent Data Analysis, 2007, 11 (5): 561- 580. doi: 10.3233/IDA-2007-11508 | 
| 23 | SAKOE H ,  CHIBA S .  Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1978, 26 (1): 43- 49. doi: 10.1109/TASSP.1978.1163055 | 
| 24 | JEONG Y S ,  JEONG M K ,  OMITAOMU O A .  Weighted dynamic time warping for time series classification[J]. Pattern Recognition, 2011, 44 (9): 2231- 2240. doi: 10.1016/j.patcog.2010.09.022 | 
| 25 | KEOGH E ,  RATANAMAHATANA C A .  Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7 (3): 358- 386. doi: 10.1007/s10115-004-0154-9 | 
| 26 | PETITJEAN F, FORESTIER G, WEBB G I, et al. Dynamic time warping averaging of time series allows faster and more accurate classification[C]//Proc. of the IEEE International Conference on Data Mining, 2014: 470-479. | 
| 27 | PETITJEAN F ,  KETTERLIN A ,  GANCARSKI P .  A global averaging method for dynamic time warping, with applications to clustering[J]. Pattern Recognition, 2011, 44 (3): 678- 693. doi: 10.1016/j.patcog.2010.09.013 | 
| 28 | JALALIAN A , CHALUP S K . GDTW-P-SVMs: variable-length time series analysis using support vector machines[J]. Neurocomputing, 2013, 99 (1): 270- 282. | 
| 29 | JANYALIKIT T, SATHIANWIRIYAKHUN P, SIVARAKS H, et al. An enhanced support vector machine for faster time series classification[C]//Proc. of the Asian Conference on Intelligent Information and Database Systems, 2016: 616-625. | 
| 30 | IWANA B K ,  FRINKEN V ,  RIESEN K , et al.  Efficient temporal pattern recognition by means of dissimilarity space embedding with discriminative prototypes[J]. Pattern Recognition, 2017, 64, 268- 276. doi: 10.1016/j.patcog.2016.11.013 | 
| 31 | VIOLA P ,  JONES M J .  Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57 (2): 137- 154. doi: 10.1023/B:VISI.0000013087.49260.fb | 
| 32 | WANG X ,  MUEEN A ,  DING H , et al.  Experimental comparison of representation methods and distance measures for time series data[J]. Data Mining and Knowledge Discovery, 2013, 26 (2): 275- 309. doi: 10.1007/s10618-012-0250-5 | 
| 33 | LINES J ,  BAGNALL A .  Time series classification with ensembles of elastic distance measures[J]. Data Mining and Know-ledge Discovery, 2015, 29 (3): 565- 592. doi: 10.1007/s10618-014-0361-2 | 
| 34 | LUCAS B ,  SHIFAZ A ,  PELLETIER C , et al.  Proximity forest: an effective and scalable distance-based classifier for time series[J]. Data Mining and Knowledge Discovery, 2019, 33 (3): 607- 635. doi: 10.1007/s10618-019-00617-3 | 
| 35 | 嵇存. 基于Shapelet的时间序列分类方法研究[D]. 济南: 山东大学, 2017. | 
| JI C. Time series classification methods based on shapelet[D]. Jinan: Shandong University, 2017. | |
| 36 | YE L, KEOGH E. Time series shapelets: a new primitive for data mining[C]//Proc. of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009: 947-956. | 
| 37 | LIN J ,  KEOGH E ,  WEI L , et al.  Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15 (2): 107- 144. doi: 10.1007/s10618-007-0064-z | 
| 38 | RAKTHANMANON T, KEOGH E. Fast Shapelets: a scalable algorithm for discovering time series Shapelets[C]//Proc. of the SIAM International Conference on Data Mining, 2013: 668-676. | 
| 39 | ZHANG Z G, ZHANG H W, WEN Y L, et al. Accelerating time series Shapelets discovery with key points[C]//Proc. of the Asia-Pacific Web Conference, 2016: 330-342. | 
| 40 | HILLS J ,  LINES J ,  BARANAUSKAS E , et al.  Classification of time series by Shapelet transformation[J]. Data Mining and Knowledge Discovery, 2014, 28 (4): 851- 881. doi: 10.1007/s10618-013-0322-1 | 
| 41 | JI C , ZHAO C , LIU S J , et al. A fast Shapelet selection algorithm for time series classification[J]. Computer Networks, 2019, 148 (15): 231- 240. | 
| 42 | KRUSKAL W H .  A nonparametric test for the several sample problem[J]. Annals of Mathematical Statistics, 1952, 23 (4): 525- 540. doi: 10.1214/aoms/1177729332 | 
| 43 | GRABOCKA J, SCHILLING N, WISTUBA M, et al. Learning time-series shapelets[C]//Proc. of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 392-401. | 
| 44 | MA Q, ZHUANG W, COTTRELL G. Triple-Shapelet networks for time series classification[C]//Proc. of the IEEE International Conference on Data Mining, 2019: 1246-1251. | 
| 45 | WANG Y, EMONET R, FROMONT E, et al. Learning interpretable shapelets for time series classification through adversarial regularization[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/1906.00917.pdf. | 
| 46 | DENG H , RUNGER G , TUV E , et al. A time series forest for classification and feature extraction[J]. Information Sciences, 2013, 239 (4): 142- 153. | 
| 47 | BAYDOGAN M G , RUNGER G , TUV E . A bag-of-features framework to classify time series[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2013, 35 (11): 2796- 2802. | 
| 48 | SENIN P, MALINCHIK S. SAX-VSM: interpretable time series classification using SAX and vector space model[C]//Proc. of the IEEE 13th International Conference on Data Mining, 2013: 1175-1180. | 
| 49 | CUI Z C, CHEN W L, CHEN Y X. Multi-scale convolutional neural networks for time series classification[EB/OL]. [2021-03-16]. https://arxiv,org/pdf/1603.06995.pdf. | 
| 50 | WANG Z, YAN W, OATES T. Time series classification from scratch with deep neural networks: a strong baseline[C]//Proc. of the International Joint Conference on Neural Networks, 2017: 1578-1585. | 
| 51 | FAWAZ H I ,  LUCAS B ,  FORESTIER G , et al.  Inception time: finding AlexNet for time series classification[J]. Data Mining and Knowledge Discovery, 2020, 34 (6): 1936- 1962. doi: 10.1007/s10618-020-00710-y | 
| 52 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. | 
| 53 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2017. | 
| 54 | SCARDAPANE S ,  WANG D .  Randomness in neural networks: an overview[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2017, 7 (2): e1200. doi: 10.1002/widm.1200 | 
| 55 | SCHÄFER P, HÖGQVIST M. SFA: a symbolic Fourier approximation and index for similarity search in high dimensional datasets[C]//Proc. of the 15th International Conference on Extending Database Technology, 2012: 516-527. | 
| 56 | SCHÄFER P .  The BOSS is concerned with time series classification in the presence of noise[J]. Data Mining and Knowledge Discovery, 2015, 29 (6): 1505- 1530. doi: 10.1007/s10618-014-0377-7 | 
| 57 | SCHÄFER P. Bag-of-SFA-symbols in vector space (BOSS VS)[R]. Berlin: Zuse Institute Berlin, 2015: 15-30. | 
| 58 | SCHÄFER P, LESER U. Fast and accurate time series classification with weasel[C]//Proc. of the ACM on Conference on Information and Knowledge Management, 2017: 637-646. | 
| 59 | SALTON G ,  WONG A ,  YANG C S .  A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18 (11): 613- 620. doi: 10.1145/361219.361220 | 
| 60 | LI D , BISSYANDÉ T F , KLEIN J , et al. Time series classification with discrete wavelet transformed data[J]. International Journal of Software Engineering and Knowledge Engineering, 2016, 26 (10): 1361- 1377. | 
| 61 | SALVADOR S ,  CHAN P .  Toward accurate dynamic time warping in linear time and space[J]. Intelligent Data Analysis, 2007, 11 (5): 561- 580. doi: 10.3233/IDA-2007-11508 | 
| 62 | TAUBMAN D S ,  MARCELLIN M W .  JPEG2000: standard for interactive imaging[J]. Proceedings of the IEEE, 2002, 90 (8): 1336- 1357. doi: 10.1109/JPROC.2002.800725 | 
| 63 | ZHANG H, HO T B, LIN M S. A non-parametric wavelet feature extractor for time series classification[C]//Proc. of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2004: 595-603. | 
| 64 | POPIVANOV I, MILLER R J. Similarity search over time-series data using wavelets[C]//Proc. of the International Confe-rence on Data Engineering, 2002: 212-221. | 
| 65 | LI Q F, SHEN L L, GUO S, et al. Wavelet integrated CNNs for noise-robust image classification[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7245-7254. | 
| 66 | YUAN B, WANG C, JIANG F, et al. WaveletFCNN: a deep time series classification model for wind turbine blade icing detection[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/1902.05625.vl.pdf. | 
| 67 | WANG J Y, WANG Z, LI F J, et al. Multilevel wavelet decomposition network for interpretable time series analysis[C]//Proc. of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 2437-2446. | 
| 68 | BAGNALL A ,  JANACEK G .  A run length transformation for discriminating between auto regressive time series[J]. Journal of Classification, 2014, 31 (2): 154- 178. doi: 10.1007/s00357-013-9135-6 | 
| 69 | CAIADO J ,  CRATO N ,  PEÑA D .  A periodogram-based metric for time series classification[J]. Computational Statistics and Data Analysis, 2006, 50 (10): 2668- 2684. doi: 10.1016/j.csda.2005.04.012 | 
| 70 | BAGNALL A, DAVIS L, HILLS J, et al. Transformation based ensembles for time series classification[C]//Proc. of the SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, 2012: 307-318. | 
| 71 | WANG Z, OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[C]//Proc. of the Workshops at the 29th AAAI Conference on Artificial Intelligence, 2015. | 
| 72 | WANG Z, OATES T. Imaging time-series to improve classification and imputation[C]//Proc. of the 24th International Joint Conference on Artificial Intelligence, 2015: 3939-3945. | 
| 73 | CAMPANHARO A S L O , SIRER M I , MALMGREN R D , et al. Duality between time series and networks[J]. PloS One, 2011, 6 (8): 378- 390. | 
| 74 | NGIAM J Q , CHEN Z H , CHIA D , et al. Tiled convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2010, 23, 1279- 1287. | 
| 75 | ECKMANN J P , KAMPHORST S O , RUELLE D . Recurrence plots of dynamical systems[J]. World Scientific Series on Nonlinear Science Series, 1987, 4 (9): 973- 977. | 
| 76 | SILVA D F, DE SOUZA V M A, BATISTA G E. Time series classification using compression distance of recurrence plots[C]//Proc. of the IEEE 13th International Conference on Data Mining, 2013: 687-696. | 
| 77 | HATAMI N ,  GAVET Y ,  DEBAYLE J .  Bag of recurrence patterns representation for time-series classification[J]. Pattern Analysis and Applications, 2019, 22 (3): 877- 887. doi: 10.1007/s10044-018-0703-6 | 
| 78 | HATAMI N, GAVET Y, DEBAYLE J. Classification of time-series images using deep convolutional neural networks[C]//Proc. of the 10th International Society for Optics and Photonics, 2018. | 
| 79 | ZHANG Y ,  HOU Y ,  ZHOU S L , et al.  Encoding time series as multi-scale signed recurrence plots for classification using fully con-volutional networks[J]. Sensors, 2020, 20 (14): 3818. doi: 10.3390/s20143818 | 
| 80 | CAMPANA B J L ,  KEOGH E J .  A compression-based distance measure for texture[J]. Statistical Analysis and Data Mining: the ASA Data Science Journal, 2010, 3 (6): 381- 398. doi: 10.1002/sam.10093 | 
| 81 | WANG J J, YANG J C, YU K, et al. Locality-constrained linear coding for image classification[C]//Proc. of the IEEE 23rd Conference on Computer Vision & Pattern Recognition, 2010: 3360-3367. | 
| 82 | BAGNALL A ,  LINES J ,  HILLS J , et al.  Time-series classification with COTE: the collective of transformation-based ensembles[J]. IEEE Trans.on Knowledge and Data Engineering, 2015, 27 (9): 2522- 2535. doi: 10.1109/TKDE.2015.2416723 | 
| 83 | CORDUAS M , PICCOLO D . Time series clustering and classification by the autoregressive metric[J]. Computational Statistics & Data Analysis, 2008, 52 (4): 1860- 1872. | 
| 84 | SIMPKINS A . System identification: theory for the user[J]. IEEE Robotics & Automation Magazine, 2012, 19 (2): 95- 96. | 
| 85 | CARDEN E P ,  BROWNJOHN J M W .  ARMA modelled time-series classification for structural health monitoring of civil infrastructure[J]. Mechanical Systems and Signal Processing, 2008, 22 (2): 295- 314. doi: 10.1016/j.ymssp.2007.07.003 | 
| 86 | BAYDOGAN M G ,  RUNGER G .  Time series representation and similarity based on local autopatterns[J]. Data Mining and Knowledge Discovery, 2016, 30 (2): 476- 509. doi: 10.1007/s10618-015-0425-y | 
| 87 | HVSKEN M ,  STAGGE P .  Recurrent neural networks for time series classification[J]. Neurocomputing, 2003, 50, 223- 235. doi: 10.1016/S0925-2312(01)00706-8 | 
| 88 | HOCHREITER S ,  SCHMIDHUBER J .  Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780. doi: 10.1162/neco.1997.9.8.1735 | 
| 89 | TANISARO P, HEIDEMANN G. Time series classification using time warping invariant echo state networks[C]//Proc. of the IEEE 15th International Conference on Machine Learning and Applications, 2016: 831-836. | 
| 90 | PASCANU R, GULCEHRE C, CHO K, et al. How to construct deep recurrent neural networks[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/1312.6026.pdf. | 
| 91 | JAEGER H . Adaptive nonlinear system identification with echo state networks[J]. Advances in Neural Information Processing Systems, 2002, 15, 609- 616. | 
| 92 | LINES J , TAYLOR S , BAGNALL A . Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12 (5): 52- 73. | 
| 93 | SHIFAZ A ,  PELLETIER C ,  PETITJEAN F , et al.  TS-chief: a scalable and accurate forest algorithm for time series classification[J]. Data Mining and Knowledge Discovery, 2020, 34 (3): 742- 775. doi: 10.1007/s10618-020-00679-8 | 
| 94 | 葛轶洲, 许翔, 杨锁荣, 等. 序列数据的数据增强方法综述[J]. 计算机科学与探索, 2021, 15 (7): 1207- 1219. | 
| GE Y Z , XU X , YANG S R , et al. A survey on sequence data augmentation[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15 (7): 1207- 1219. | |
| 95 | LE GUENNEC A, MALINOWSKI S, TAVENARD R. Data augmentation for time series classification using convolutional neural networks[C]//Proc. of the ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, 2016. | 
| 96 | FIELDS T, HSIEH G, CHENOU J. Mitigating drift in time series data with noise augmentation[C]//Proc. of the IEEE International Conference on Computational Science and Computational Intelligence, 2019: 227-230. | 
| 97 | GAO J K, SONG X M, WEN Q S, et al. RobustTAD: robust time series anomaly detection via decomposition and convolutional neural networks[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/2002.09545.pdf. | 
| 98 | STEVEN E O ,  HAN D S .  Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network[J]. Sensors, 2018, 18 (9): 2892. doi: 10.3390/s18092892 | 
| 99 | IWANA B K , UCHIDA S . An empirical survey of data augmentation for time series classification with neural networks[J]. PloS One, 2021, 16 (7): e0254841. | 
| 100 | CHAWLA N V , BOWYER K W , HALL L O , et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16 (1): 321- 357. | 
| 101 | FAWAZ H I, FORESTIER G, WEBER J, et al. Data augmentation using synthetic data for time series classification with deep residual networks[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/1808.02455.pdf. | 
| 102 | ESTEBAN C, HYLAND S L, RÄTSCH G. Real-valued (medical) time series generation with recurrent conditional gans[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/1706.02633.pdf. | 
| 103 | ZHU F , YE F , FU Y C , et al. Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network[J]. Scientific Reports, 2019, 9 (1): 6734. | 
| 104 | YOON J, JARRETT D, SCHAAR M V D. Time-series gene-rative adversarial networks[C]//Proc. of the 33rd Conference on Neural Information Processing Systems, 2019. | 
| 105 | WEN Q S, SUN L, YANG F, et al. Time series data augmentation for deep learning: a survey[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/2002.12478.pdf. | 
| 106 | TAYLOR L, NITSCHKE G. Improving deep learning with generic data augmentation[C]//Proc. of the IEEE Symposium Series on Computational Intelligence, 2018: 1542-1547. | 
| 107 | KASHIPAREKH K, NARWARIYA J, MALHOTRA P, et al. ConvTimeNet: a pre-trained deep convolutional neural network for time series classification[C]//Proc. of the IEEE International Joint Conference on Neural Networks, 2019. | 
| 108 | FAWAZ H I, FORESTIER G, WEBER J, et al. Transfer learning for time series classification[C]//Proc. of the IEEE International Conference on Big Data, 2018: 1367-1376. | 
| 109 | FRIEDMAN M . A comparison of alternative tests of significance for the problem of m rankings[J]. The Annals of Mathematical Statistics, 1940, 11 (1): 86- 92. | 
| 110 | BENAVOLI A , CORANI G , MANGILI F . Should we really use post-hoc tests based on mean-ranks?[J]. The Journal of Machine Learning Research, 2016, 17 (1): 152- 161. | 
| 111 | DEMŠAR J . Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7 (1): 1- 30. | 
| 112 | KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/1412.6980.pdf. | 
| 113 | ITAKURA F . Minimum prediction residual principle applied to speech recognition[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1975, 23 (1): 67- 72. | 
| 114 | 翟婷婷, 高阳, 朱俊武. 面向流数据分类的在线学习综述[J]. 软件学报, 2020, 31 (4): 912- 931. | 
| ZHAI T T , GAO Y , ZHU J W . Survey of online learning algorithms for streaming data classification[J]. Journal of Software, 2020, 31 (4): 912- 931. | |
| 115 | 郭虎升, 张爱娟, 王文剑. 基于在线性能测试的概念漂移检测方法[J]. 软件学报, 2020, 31 (4): 932- 947. | 
| GUO H S , ZHANG A J , WANG W J . Concept drift detection method based on online performance test[J]. Journal of Software, 2020, 31 (4): 932- 947. | |
| 116 | 杜诗语, 韩萌, 申明尧, 等. 概念漂移数据流集成分类算法综述[J]. 计算机工程, 2020, 46 (1): 15- 24. | 
| DU S Y , HAN M , SHEN M Y , et al. Survey of ensemble classification algorithms for data streams with concept drift[J]. Computer Engineering, 2020, 46 (1): 15- 24. | |
| 117 | LAN Z, CHEN M, GOODMAN S, et al. Albert: a lite bert for self-supervised learning of language representations[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/1909.11942.pdf. | 
| 118 | DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2021-03-16]. https://arxiv.org/pdf/1810.04805.pdf. | 
| 119 | HUANG S, XIONG Y, ZHANG Y, et al. Unsupervised triplet hashing for fast image retrieval[C]//Proc. of the on Thematic Workshops of ACM Multimedia, 2017: 84-92. | 
| 120 | CHEN X L, XIE S N, HE K M. An empirical study of training self-supervised visual transformers[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 9640-9649. | 
| [1] | Ruize LI, Shuanghui ZHANG, Yongxiang LIU. Computational efficient structural sparse ISAR imaging method based on convolutional ADMM-net [J]. Systems Engineering and Electronics, 2023, 45(1): 56-70. | 
| [2] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. | 
| [3] | Limin ZHANG, Kaiwen TAN, Wenjun YAN, Yuyuan ZHANG. Radar emitter recognition based on multi-level jumper residual network [J]. Systems Engineering and Electronics, 2022, 44(7): 2148-2156. | 
| [4] | Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network [J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822. | 
| [5] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. | 
| [6] | Hong ZOU, Chenyang BAI, Peng HE, Yaping CUI, Ruyan WANG, Dapeng WU. Edge service placement strategy based on distributed deep learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1728-1737. | 
| [7] | Lin HUANG, Li GONG, Wei JIANG, Kangbo WANG. Remaining useful life prediction based on multi-source information fusion and HMM [J]. Systems Engineering and Electronics, 2022, 44(5): 1747-1756. | 
| [8] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. | 
| [9] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. | 
| [10] | Yunxiang YAO, Ying CHEN. Target tracking network based on dual-modal interactive fusion under attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 410-419. | 
| [11] | Chunling XUE, Fei CAO, Qing SUN, Jianqiang QIN, Xiaowei FENG. Sea-surface weak target detection based on multi-feature information fusion [J]. Systems Engineering and Electronics, 2022, 44(11): 3338-3345. | 
| [12] | Yongxing GAO, Xudong WANG, Ling WANG, Daiyin ZHU, Jun GUO, Fanwang MENG. Weather signal detection for dual polarization weather radar based on RCNN [J]. Systems Engineering and Electronics, 2022, 44(11): 3380-3387. | 
| [13] | Yu ZHANG, Kai WU, Jie GUO, Zhishan GE, Baochao ZHANG. Adaptive sequential track-association algorithm based on data quality assessment [J]. Systems Engineering and Electronics, 2022, 44(11): 3477-3485. | 
| [14] | Yiheng ZHOU, Jun YANG, Saiqiang XIA, Mingjiu LYU. Estimation method of micro-motion parameters for rotor targets under flashing [J]. Systems Engineering and Electronics, 2022, 44(1): 54-63. | 
| [15] | Rong FU, Tianyao HUANG, Yimin LIU. DNN based 1-bit block sparse recovery in frequency agile coherent radar [J]. Systems Engineering and Electronics, 2022, 44(1): 70-75. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||