Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (2): 546-556.doi: 10.12305/j.issn.1001-506X.2022.02.24
• Systems Engineering • Previous Articles Next Articles
Kaixuan CHU1,*, Tianqing CHANG1, Depeng KONG2, Lei ZHANG1, Haoze SUN3
Received:
2021-01-11
Online:
2022-02-18
Published:
2022-02-24
Contact:
Kaixuan CHU
CLC Number:
Kaixuan CHU, Tianqing CHANG, Depeng KONG, Lei ZHANG, Haoze SUN. Bee colony algorithm based model of tank troop deployment and firepower allocation[J]. Systems Engineering and Electronics, 2022, 44(2): 546-556.
Table 1
Combat example setting"
小规模 | 中规模 | 大规模 | ||||||||
m | a | n | m | a | n | m | a | n | ||
10 | 4 | 3 | 20 | 7 | 7 | 40 | 10 | 15 | ||
Y1=[2, 3, 2, 3] Y2=[3, 1, 4, 2] Y3=[1, 3, 3, 3] | Y1=[3, 2, 3, 3, 3, 3, 3] Y2=[4, 1, 3, 5, 2, 2, 3] Y3=[3, 5, 3, 3, 1, 1, 4] | Y1=[3, 5, 3, 6, 5, 4, 6, 2, 3, 3] Y2=[3, 5, 3, 5, 1, 7, 1, 1, 9, 5] Y3=[6, 3, 4, 3, 4, 5, 1, 3, 4, 7] |
Table 2
Probability of damage to target in firing area"
射击区域 | 目标 | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
1 | 0.25 | 0.30 | 0.20 | 0.15 | 0.15 | 0.15 | 0.20 | 0.15 | 0.20 | 0.15 | 0.15 | 0.15 | 0.15 | 0 | 0 |
2 | 0.20 | 0.20 | 0.20 | 0.25 | 0.10 | 0.15 | 0.20 | 0.10 | 0.20 | 0 | 0.25 | 0.25 | 0.10 | 0 | 0.10 |
3 | 0 | 0.15 | 0.30 | 0.10 | 0.20 | 0.25 | 0.15 | 0.30 | 0 | 0 | 0.10 | 0.15 | 0 | 0.10 | 0.15 |
4 | 0 | 0.20 | 0.15 | 0.35 | 0.15 | 0 | 0.15 | 0.25 | 0.10 | 0.10 | 0 | 0 | 0.15 | 0 | 0.20 |
5 | 0.15 | 0.10 | 0.20 | 0 | 0.25 | 0.20 | 0.30 | 0 | 0.30 | 0.25 | 0.30 | 0.10 | 0.30 | 0.10 | 0.15 |
6 | 0.15 | 0.15 | 0.15 | 0.25 | 0.30 | 0 | 0.25 | 0.10 | 0 | 0.15 | 0.20 | 0 | 0.20 | 0.20 | 0.20 |
7 | 0.20 | 0.15 | 0.25 | 0 | 0.20 | 0.15 | 0.15 | 0 | 0.15 | 0.20 | 0.25 | 0.40 | 0 | 0.15 | 0 |
8 | 0.05 | 0.10 | 0 | 0.10 | 0.15 | 0.25 | 0 | 0.20 | 0.20 | 0.20 | 0.15 | 0.30 | 0.15 | 0.20 | 0.15 |
9 | 0 | 0 | 0.25 | 0.10 | 0.20 | 0.15 | 0.15 | 0 | 0.15 | 0.25 | 0 | 0.20 | 0.25 | 0.30 | 0.20 |
10 | 0 | 0 | 0.15 | 0.30 | 0.25 | 0.20 | 0.25 | 0.20 | 0.10 | 0.15 | 0.15 | 0.20 | 0.20 | 0.15 | 0.35 |
Table 3
Probability of damage to tank in firing area from target"
射击区域 | 目标 | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
1 | 0.55 | 0.50 | 0.45 | 0.45 | 0.50 | 0.20 | 0.15 | 0.15 | 0.25 | 0.20 | 0.25 | 0.35 | 0.30 | 0.25 | 0.20 |
2 | 0.30 | 0.60 | 0.45 | 0.30 | 0.30 | 0.15 | 0.25 | 0.25 | 0.30 | 0.45 | 0.40 | 0.20 | 0.20 | 0.20 | 0.20 |
3 | 0.30 | 0.50 | 0.35 | 0.45 | 0.45 | 0.30 | 0.35 | 0.30 | 0.45 | 0.35 | 0.40 | 0.30 | 0.35 | 0.45 | 0.50 |
4 | 0.40 | 0.50 | 0.55 | 0.50 | 0.65 | 0.30 | 0.25 | 0.30 | 0.40 | 0.50 | 0.45 | 0.55 | 0.65 | 0.50 | 0.40 |
5 | 0.25 | 0.35 | 0.70 | 0.40 | 0.50 | 0.55 | 0.35 | 0.40 | 0.60 | 0.45 | 0.45 | 0.40 | 0.45 | 0.45 | 0.40 |
6 | 0.30 | 0.25 | 0.55 | 0.55 | 0.40 | 0.50 | 0.45 | 0.55 | 0.50 | 0.40 | 0.55 | 0.40 | 0.45 | 0.50 | 0.35 |
7 | 0.40 | 0.25 | 0.20 | 0.30 | 0.30 | 0.40 | 0.65 | 0.45 | 0.45 | 0.55 | 0.45 | 0.35 | 0.55 | 0.45 | 0.45 |
8 | 0.30 | 0.35 | 0.40 | 0.55 | 0.30 | 0.25 | 0.50 | 0.50 | 0.40 | 0.55 | 0.65 | 0.45 | 0.45 | 0.35 | 0.50 |
9 | 0.35 | 0.20 | 0.20 | 0.45 | 0.30 | 0.50 | 0.25 | 0.55 | 0.40 | 0.30 | 0.35 | 0.35 | 0.35 | 0.60 | 0.55 |
10 | 0.20 | 0.30 | 0.30 | 0.40 | 0.35 | 0.45 | 0.30 | 0.40 | 0.55 | 0.35 | 0.20 | 0.55 | 0.40 | 0.55 | 0.70 |
Table 5
Experimental test report of five algorithms for M1"
规模 | 战例 | 指标 | ABC-NEH算法 | RNADE算法 | IABCI算法 | 标准ABC算法 | 本文算法 |
小规模 | Y1 | Mean Std SR(100%)/% SR(99%)/% | 3.038×10-4 8.691×10-4 87 100 | 9.028×10-4 1.564×10-3 73 100 | 1.244×10-3 1.562×10-3 55 100 | 6.078×10-3 6.153×10-3 16 73 | 1.670×10-5 1.670×10-4 99 100 |
Y2 | Mean Std SR(100%)/% SR(99%)/% | 0 0 100 100 | 2.781×10-6· 2.781×10-5 99 100 | 0 0 100 100 | 4.695×10-3 8.7×10-3 69 77 | 0 0 100 100 | |
Y3 | Mean Std SR(100%)/% SR(99%)/% | 1.390×10-3 3.463×10-3 86 86 | 2.305×10-3 4.523×10-3 78 78 | 4.022×10-3 6.473×10-3 68 68 | 1.761×10-2 9.973×10-3 12 12 | 0 0 100 100 | |
中规模 | Y1 | Mean Std SR(100%)/% SR(99%)/% | 2.087×10-2 4.989×10-3 0 1 | 1.025×10-2 5.258×10-3 4 44 | 2.867×10-2 6.159×10-3 0 0 | 4.176×10-2 8.021×10-3 0 0 | 2.225×10-3 2.232×10-3 38 100 |
Y2 | Mean Std SR(100%)/% SR(99%)/% | 1.631×10-2 4.683×10-3 0 8 | 8.311×10-3 5.245×10-3 5 53 | 2.305×10-2 5.616×10-3 0 3 | 3.578×10-2 7.128×10-3 0 0 | 1.941×10-3 1.997×10-3 30 100 | |
Y3 | Mean Std SR(100%)/% SR(99%)/% | 1.593×10-2 4.513×10-3 0 10 | 1.220×10-2 4.807×10-3 1 22 | 2.145×10-2 4.544×10-3 0 0 | 3.139×10-2 5.690×10-3 0 0 | 4.103×10-3 2.681×10-3 3 95 | |
大规模 | Y1 | Mean Std SR(100%)/% SR(99%)/% | 3.768×10-2 4.868×10-3 0 0 | 1.271×10-2 4.442×10-3 0 18 | 4.749×10-2 5.591×10-3 0 0 | 6.188×10-2 6.032×10-3 0 0 | 9.152×10-3 3.124×10-3 0 50 |
Y2 | Mean Std SR(100%)/% SR(99%)/% | 3.310×10-2 5.156×10-3 0 0 | 8.236×10-3 4.241×10-3 0 52 | 4.126×10-2 5.193×10-3 0 0 | 5.349×10-2 6.716×10-3 0 0 | 5.505×10-3 2.712×10-3 0 80 | |
Y3 | Mean Std SR(100%)/% SR(99%)/% | 3.452×10-2 5.583×10-3 0 0 | 8.316×10-3 4.232×10-3 0 52 | 4.360×10-2 6.935×10-3 0 0 | 6.034×10-2 6.880×10-3 0 0 | 5.536×10-3 2.762×10-3 1 84 |
Table 7
Experimental test report of five algorithms for M2"
规模 | 指标 | qABC算法 | GRABC算法 | eABC算法 | 标准ABC算法 | 本文算法 |
小规模 | Mean Std SR(100%)/% SR(99%)/% | 3.221×10-3 5.339×10-3 96 100 | 2.141×10-3 3.982×10-3 96 100 | 1.338×10-4 1.338×10-4 100 100 | 5.201×10-3 6.017×10-3 92 100 | 0 0 100 100 |
中规模 | Mean Std SR(100%)/% SR(99%)/% | 3.318×10-3 7.212×10-3 12 80 | 4.231×10-3 4.414×10-3 16 88 | 3.012×10-3 3.787×10-3 16 90 | 5.250×10-3 6.722×10-3 4 56 | 2.101×10-3 3.016×10-3 28 92 |
大规模 | Mean Std SR(100%)/% SR(99%)/% | 2.235×10-2 4.555×10-3 0 32 | 9.134×10-3 1.092×10-2 0 36 | 8.776×10-3 2.712×10-3 0 44 | 4.414×10-2 1.321×10-2 0 8 | 6.120×10-3 3.100×10-3 4 68 |
1 |
CAI H P , LIU J X , CHEN Y W , et al. Survey of the research on dynamic weapon target assignment problem[J]. Journal of Systems Engineering and Electronics, 2006, 17 (3): 559- 565.
doi: 10.1016/S1004-4132(06)60097-2 |
2 |
王正元, 谭跃进. 坦克会战中动态武器-目标分配问题求解方法[J]. 国防科技大学学报, 2003, 25 (6): 56- 61.
doi: 10.3969/j.issn.1001-2486.2003.06.013 |
WANG Z Y , TAN Y J . A solution to dynamic weapon-target assignment in the tank warfare[J]. Journal of National University of Defense Technology, 2003, 25 (6): 56- 61.
doi: 10.3969/j.issn.1001-2486.2003.06.013 |
|
3 | 赵烨南, 杜伟伟, 陈铁健, 等. 基于粒子群优化算法的坦克火力分配方法[J]. 科技创新与应用, 2020, (11): 124- 126. |
ZHAO Y N , DU W W , CHEN T J , et al. A tank fire allocation method based on particle Swarm optimization algorithm[J]. Technology Innovation and Application, 2020, (11): 124- 126. | |
4 | 常天庆, 陈军伟, 郝娜, 等. 装甲分队动态武器目标分配中蚁群算法终止控制[J]. 系统工程与电子技术, 2015, 37 (2): 343- 347. |
CHANG T Q , CHEN J W , HAO N , et al. Terminating control of act colony algorithm for armored unit dynamic weapon-target assignment[J]. Systems Engineering and Electronics, 2015, 37 (2): 343- 347. | |
5 |
孔德鹏, 常天庆, 郝娜, 等. 基于对抗的突击武器与支援武器协同火力打击决策方法[J]. 兵工学报, 2019, 40 (3): 629- 640.
doi: 10.3969/j.issn.1000-1093.2019.03.023 |
KOND D P , CHANG T Q , HAO N , et al. Confrontation-based cooperative fire strike decision-making method of assault wea-pons and support weapons[J]. Acta Armamentarii, 2019, 40 (3): 629- 640.
doi: 10.3969/j.issn.1000-1093.2019.03.023 |
|
6 | 张先剑. 空陆攻防博弈的动态武器目标分配[J]. 国防科技大学学报, 2019, 41 (2): 185- 190. |
ZHANG X J . Land defense weapon versus target assignment against air attack[J]. Journal of National University of Defense Technology, 2019, 41 (2): 185- 190. | |
7 | LEBOUCHER C, SHIN H S, LE MENEC S, et al. Novel evolutionary game based multi-objective optimisation for dynamic weapon target assignment[C]//Proc. of the 19th International Federation of Automatic Control World Congress, 2014: 3936-3941. |
8 |
YAO Z X , LI M , CHEN Z J , et al. Mission decision-making method of multi-aircraft cooperatively attacking multi-target based on game theoretic framework[J]. Chinese Journal of Aeronautics, 2016, 29 (6): 1685- 1694.
doi: 10.1016/j.cja.2016.09.006 |
9 | LLOYD S P, WITSENHAUSEN H S. Weapons allocation is NP-complete[C]//Proc. of the IEEE Summer Simulation Confe-rence, 1986: 1054-1058. |
10 |
LEE M Z . Constrained weapon-target assignment: enhanced very large scale neighborhood search algorithm[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 40 (1): 198- 204.
doi: 10.1109/TSMCA.2009.2030163 |
11 |
WANG Y , JIN L , HUANG W L , et al. Dynamic weapon target assignment based on intuitionistic fuzzy entropy of discrete particle swarm[J]. China Communications, 2017, 14 (1): 169- 179.
doi: 10.1109/CC.2017.7839767 |
12 |
CAO M , FANG W G . Swarm intelligence algorithms for wea-pon-target assignment in a multilayer defense scenario: a comparative study[J]. Symmetry, 2020, 12 (5): 824.
doi: 10.3390/sym12050824 |
13 |
FU G Y , WANG C , ZHANG D Q , et al. A multi objective particle swarm optimization algorithm based on multi population co-evolution for weapon-target assignment[J]. Mathematical Problems in Engineering, 2019,
doi: 10.1155/2019/1424590 |
14 |
MISHRA B , KIM E , BANG G C , et al. Weapon target assignment problem: multi-objective formulation, optimisation using MOPSO and TOPSIS[J]. International Journal of Intelligent Defence Support Systems, 2015, 5 (3): 226- 252.
doi: 10.1504/IJIDSS.2015.075483 |
15 |
LI Y , KOU Y X , LI Z W , et al. A modified pareto ant colony optimization approach to solve biobjective weapon-target assignment problem[J]. International Journal of Aerospace Engineering, 2017,
doi: 10.1155/2017/1746124 |
16 |
DE REZENDE M , DE LIMA B S L P , GUIMARAES S . A greedy ant colony system for defensive resource assignment problems[J]. Applied Artificial Intelligence, 2018, 32 (2): 138- 152.
doi: 10.1080/08839514.2018.1451137 |
17 | 张春美, 陈杰, 辛斌. 武器目标分配问题的离散差分进化算法[J]. 北京理工大学学报, 2014, 34 (3): 289- 293. |
ZHANG C M , CHEN J , XIN B . A discrete differential evolution algorithm for the weapon target assignment problem[J]. Transactions of Beijing Institute of Technology, 2014, 34 (3): 289- 293. | |
18 |
LI X Y , ZHOU D Y , PAN Q , et al. Weapon-target assignment problem by multiobjective evolutionary algorithm based on decomposition[J]. Complexity, 2018,
doi: 10.1155/2018.8623051 |
19 |
LEBOUCHER C , SHIN H S , MÉNEC S , et al. Novel evolutionary game based multi-objective optimisation for dynamic weapon target assignment[J]. IFAC Proceedings Volumes, 2014, 47 (3): 3936- 3941.
doi: 10.3182/20140824-6-ZA-1003.02150 |
20 | 吴文海, 郭晓峰, 周思羽, 等. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43 (4): 1012- 1021. |
WU W H , GUO X F , ZHOU S Y , et al. Improved differential evolution algorithm for solving weapon-target assignment problem[J]. Systems Engineering and Electronics, 2021, 43 (4): 1012- 1021. | |
21 |
KARABOGA D , BASTURK B . A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39 (3): 459- 471.
doi: 10.1007/s10898-007-9149-x |
22 | 常天庆, 陈军伟, 张雷, 等. 坦克分队WTA问题的改进人工蜂群算法[J]. 装甲兵工程学院学报, 2015, 29 (5): 69- 76. |
CHANG T Q , CHEN J W , ZHANG L , et al. An improved artificial bee colony algorithm for tank unit WTA problem[J]. Journal of Academy of Armored Force Engineering, 2015, 29 (5): 69- 76. | |
23 |
CHANG T Q , KONG D P , HAO N , et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 70, 845- 863.
doi: 10.1016/j.asoc.2018.06.014 |
24 | KARABOGA D , GORKEMLI B . A quick artificial bee colony(qABC) algorithm and its performance on optimization problems[J]. Applied Soft Computing, 2014, 23 (5): 227- 238. |
25 | LI G H , CUI L Z , FU X H , et al. Artificial bee colony algorithm with gene recombination for numerical function optimization[J]. Applied Soft Computing, 2017, 52 (3): 146- 159. |
26 | 孔德鹏, 常天庆, 戴文君, 等. 基于排序选择和精英引导的改进人工蜂群算法[J]. 控制与决策, 2019, 34 (4): 781- 786. |
KONG D P , CHANG T Q , DAI W J , et al. An improved artificial bee colony algorithm based on the ranking selection and the elite guidance[J]. Control and Decision, 2019, 34 (4): 781- 786. | |
27 |
LIU Q Z , ZHU M M , LI G H . A novel artificial bee colony algorithm with local and global information interaction[J]. Applied Soft Computing, 2018, 62, 702- 735.
doi: 10.1016/j.asoc.2017.11.012 |
28 |
LI X Y , ZHOU D Y , YANG Z , et al. A novel genetic algorithm for the synthetical sensor-weapon-target assignment problem[J]. Applied Sciences, 2019, 9 (18): 3803.
doi: 10.3390/app9183803 |
29 | 徐兰, 苏翔. 求解双层规划优化问题的层次风驱动优化算法[J]. 控制与决策, 2016, 31 (10): 1894- 1898. |
XU L , SU X . Hierarchical wind driven optimization method for solving bi-level programming problem[J]. Control and Decision, 2016, 31 (10): 1894- 1898. |
[1] | WANG Minle, FAN Yangtao. Intelligent solving algorithm for effectsbased firepower allocation model of conventional missiles [J]. Systems Engineering and Electronics, 2017, 39(11): 2509-2514. |
[2] | WANG Hui-ying, WANG Wen-bin. Hybrid bee colony algorithm with modified search strategy [J]. Systems Engineering and Electronics, 2014, 36(10): 2094-2101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||