Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (12): 3732-3740.doi: 10.12305/j.issn.1001-506X.2021.12.38
• Reliability • Previous Articles
Zhiyuan LI, Sifeng LIU, Zhigeng FANG*, Yuexin XIA
Received:
2021-02-05
Online:
2021-11-24
Published:
2021-11-30
Contact:
Zhigeng FANG
CLC Number:
Zhiyuan LI, Sifeng LIU, Zhigeng FANG, Yuexin XIA. Grey FMECA model based on ordering of grey point in rectangular region under the background of poor information[J]. Systems Engineering and Electronics, 2021, 43(12): 3732-3740.
1 |
MENCHINELLI A , INGIOSI F , PAMPHILI L , et al. A reliability engineering approach for managing risks in cubesats[J]. Aerospace, 2018, 5 (4): 121- 126.
doi: 10.3390/aerospace5040121 |
2 | 邵维贵. FMECA和FTA在某型飞机起落架系统故障分析中的应用研究[D]. 成都: 西华大学, 2019. |
SHAO W G. Research on the FMECA and FTA of the landing gear system for a certain type of aircraft in failure analysis[D]. Chengdu: Xihua University, 2019. | |
3 |
GONG J Q , LUO Y P , QIU Z W , et al. Determination of key components in automobile braking systems based on ABC classification and FMECA[J]. Journal of Traffic and Transportation Engineering, 2020,
doi: 10.1016/j.jtte.2019.01.008 |
4 | 齐新宇. 汽车发动机的状态监测及故障诊断技术的研究[D]. 长春: 吉林大学, 2018. |
QI X Y. Research on condition monitoring and fault diagnosis technology of automobile engine[D]. Changchun: Jilin University, 2018. | |
5 |
AHMED S , GU X C . Accident-based FMECA study of marine boiler for risk prioritization using fuzzy expert system[J]. Results in Engineering, 2020, 6, 100123.
doi: 10.1016/j.rineng.2020.100123 |
6 |
BORAL S , CHATURVEDI S K , HOWARD I , et al. An integrated interval type-2 fuzzy sets and multiplicative half quadratic programming-based MCDM framework for calculating aggregated risk ranking results of failure modes in FMECA[J]. Process Safety and Environmental Protection, 2021, 150, 194- 222.
doi: 10.1016/j.psep.2021.04.006 |
7 |
ŤAVODA P , KOVÁČ J , ȽUKASZCZYK Z Ƚ . Reliability analysis of forest machines due to FMEA method[J]. Management Systems in Production Engineering, 2018, 26 (4): 200- 206.
doi: 10.1515/mspe-2018-0032 |
8 |
SHRESTHA S , MALLINENI J , YEDID I , et al. Determination of dominant failure modes using FMECA on the field deployed C-Si modules under hot-dry desert climate[J]. IEEE Journal of Photovoltaics, 2015, 5, 174- 182.
doi: 10.1109/JPHOTOV.2014.2366872 |
9 | SEYED H , SAFAEI N , ASGHARPOUR M J . Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique[J]. Reliability Engineering and System Safety, 2005, 91 (8): 872- 881. |
10 |
CARPITELLA S , CERTA A , IZQUIERDO J . A combined multi-criteria approach to support FMECA analyses: a real-world case[J]. Reliability Engineering and System Safety, 2018, 169, 394- 402.
doi: 10.1016/j.ress.2017.09.017 |
11 |
BOWLESJ B , PELÁEZC E . Fuzzy logic prioritization of failures in a system failuremode, effects and criticality analysis[J]. Reliability Engineering and System Safety, 1995, 50 (2): 203- 213.
doi: 10.1016/0951-8320(95)00068-D |
12 |
PETROVIĆ D V , TANASIJEVIĆ M , MILIĆ V , et al. Risk assessment model of mining equipment failure based on fuzzy logic[J]. Expert Systems with Applications, 2014, 41 (18): 8157- 8164.
doi: 10.1016/j.eswa.2014.06.042 |
13 |
CATELANI M , CIANI L , VENZI M . Failure modes, mechanisms and effect analysis on temperature redundant sensor stage[J]. Reliability Engineering and System Safety, 2018, 180, 425- 433.
doi: 10.1016/j.ress.2018.08.013 |
14 |
CERTA A , HOPPS F , INGHILLERI R . A Dempster-Shafer theory-based approach to the failure mode, effects and criticality analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel[J]. Reliability Engineering and System Safety, 2017, 159, 69- 79.
doi: 10.1016/j.ress.2016.10.018 |
15 |
RENJITH V R , JOSE K M , KUMAR P H . Fuzzy FMECA (failure mode effect and criticality analysis) of LNG storage facility[J]. Journal of Loss Prevention in the Process Industries, 2018, 56, 537- 547.
doi: 10.1016/j.jlp.2018.01.002 |
16 |
李俨, 陈海, 张清江, 等. 无人机系统健康状态评估方法研究[J]. 系统工程与电子技术, 2011, 33 (3): 562- 567.
doi: 10.3969/j.issn.1001-506X.2011.03.19 |
LI Y , CHEN H , ZHANG Q J , et al. Assessment method of health condition for UAV systems[J]. Systems Engineering and Electronics, 2011, 33 (3): 562- 567.
doi: 10.3969/j.issn.1001-506X.2011.03.19 |
|
17 | 陈光宇, 苏亮夫, 祁凌云. 基于TRIZ的复杂系统FMECA分析流程和方法研究[J]. 电子科技大学学报(社科版), 2013, 15 (2): 37- 41. |
CHEN G Y , SU L F , QI L Y . TRIZ-based FMECA analysis process and methods of complex systems[J]. Journal of University of Electronic Science and Technology of China(Social Sciences Edition), 2013, 15 (2): 37- 41. | |
18 | GUGALIYA A , BORAL S , NAIKAN V N A . A hybrid decision making framework for modified failure mode effects and criticality analysis[J]. International Journal of Quality & Reliability Management, 2019, 36 (8): 1266- 1283. |
19 | 王锦妮, 火建卫. 定量危害性矩阵分析方法研究[J]. 航空工程进展, 2016, 7 (1): 70- 77. |
WANG J N , HUO J W . Research on quantitative criticality matrix analysis method[J]. Advances in Aeronautical Science and Engineering, 2016, 7 (1): 70- 77. | |
20 |
WANG X F , ZHANG Y Z , SHEN G X . An improved FMECA for feed system of CNC machining center based on ICR and DEMATEL method[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83 (1-4): 43- 54.
doi: 10.1007/s00170-015-7551-y |
21 | LIU H C , YOU J X , DUAN C Y . An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment[J]. International Journal of Production Economics, 2017, 207, 163- 172. |
22 | 黄佳. 复杂不确定环境下FMEA改进及应用研究[D]. 上海: 上海大学, 2019. |
HUANG J. Research on FMEA improvement and application within complex and uncertain environment[D]. Shanghai: Shanghai University, 2019. | |
23 | 方志耕, 陈顶, 刘思峰. 贫信息背景的复杂装备可靠性预测现状与展望[J]. 指挥信息系统与技术, 2018, 9 (5): 1- 8. |
FANG Z G , CHEN D , LIU S F . Status and prospect of reliability prediction for complex equipment with poor information background[J]. Command Information System and Technology, 2018, 9 (5): 1- 8. | |
24 |
XIAO Q Z , SHAN M Y , GAO M Y , et al. Grey information coverage interaction relational decision making and its application[J]. Journal of Systems Engineering and Electronics, 2020, 31 (2): 359- 369.
doi: 10.23919/JSEE.2020.000013 |
25 |
XIE N M , ZHU C Y , ZHENG J . Expansion modeling of discrete grey model based on multi-factor information aggregation[J]. Journal of Systems Engineering and Electronics, 2014, 25 (5): 833- 839.
doi: 10.1109/JSEE.2014.00096 |
26 |
孟玉慈, 孙东旭, 梁媛. 利用历史故障信息提升机载计算机FMEA分析准确性[J]. 航空计算技术, 2017, 47 (4): 126- 129.
doi: 10.3969/j.issn.1671-654X.2017.04.031 |
MENG Y C , SUN D X , LIANG Y . Improving accuracy of airborne computer FMEA using historical fault information[J]. Aeronautical Computer Technique, 2017, 47 (4): 126- 129.
doi: 10.3969/j.issn.1671-654X.2017.04.031 |
|
27 | 火建卫. 危害性矩阵分析中故障模式影响概率的确定方法[J]. 航空工程进展, 2015, 6 (2): 229- 231. |
HUO J W . Determination method of failure effect probability in criticality matrix analysis[J]. Advances in Aeronautical Science and Engineering, 2015, 6 (2): 229- 231. | |
28 | 曹颖赛, 刘思峰, 方志耕, 等. 多态系统可靠性分析广义灰色贝叶斯网络模型[J]. 系统工程与电子技术, 2018, 40 (1): 231- 237. |
CAO Y S , LIU S F , FANG Z G , et al. Genralized grey Bayesian network model for realiability analysis of multi-state system[J]. Systems Engineering and Electronics, 2018, 40 (1): 231- 237. | |
29 | 张元. 多目标不确定型决策方法研究及应用[D]. 荆州: 长江大学, 2018. |
ZHANG Y. A research and application of multi-objective uncertainty decision-making[D]. Jingzhou: Yangtze University, 2018. |
[1] | GAO Pumei, ZHAN Jun. Grey prediction model of continuous interval grey number based on perturbation information [J]. Systems Engineering and Electronics, 2019, 41(11): 2533-2540. |
[2] | CHEN Kejia, CHEN Ping. Decision making method of TOPSIS based on three-parameter interval grey numbers [J]. Systems Engineering and Electronics, 2019, 41(1): 124-130. |
[3] | QIAN Li-Li, LIU Si-feng,XIE Nai-ming. Grey clustering model based on entropy weight and grey numbers [J]. Systems Engineering and Electronics, 2016, 38(2): 352-356. |
[4] | WANG Xia, DANG Yaoguo. Approach for multiple attribute decisionmaking with interval grey #br# number based on Choquet integral [J]. Systems Engineering and Electronics, 2015, 37(5): 1106-1110. |
[5] | GUO Xiao-jun, LIU Si-feng, FANG Zhi-geng. Self-memory prediction model of interval grey number based on grey degree of compound grey number [J]. Systems Engineering and Electronics, 2014, 36(6): 1124-1129. |
[6] | WANG Da-peng,WANG Bing-wen,LI Rui-fan. Improved prediction model of interval grey number based on the characteristics of grey degree of compound grey number [J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 1013-1017. |
[7] | ZENG Bo. Prediction model of interval grey number based on kernel and degree of greyness [J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 821-824. |
[8] | WANG Jie-fang,LIU Si-feng. Method of ranking three parameters interval grey numbers and its application in interval DEA model [J]. Journal of Systems Engineering and Electronics, 2011, 33(1): 106-0109. |
[9] | LI Wei-xiang,ZHANG Guang-ming,LI Bang-yi. α-PROMETHEE method based on interval grey numbers [J]. Journal of Systems Engineering and Electronics, 2010, 32(4): 780-783. |
[10] |
LIU Si-feng, FANG Zhi-geng, XIE Nai-ming.
Algorithm rules of interval grey numbers based on the “Kernel” and the degree of greyness of grey numbers [J]. Journal of Systems Engineering and Electronics, 2010, 32(2): 313-316. |
[11] | CHEN Xiao-xin, LIU Si-feng. Grey multiple attribute group decision-making method with partial weight information [J]. Journal of Systems Engineering and Electronics, 2009, 31(4): 843-846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||