Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (8): 2146-2153.doi: 10.12305/j.issn.1001-506X.2021.08.16
• Systems Engineering • Previous Articles Next Articles
Liupengcheng YUAN1,2, Zhemei FANG1,2,*, Jianbo WANG3, Xiaozhen QIN1,2
Received:2020-11-30
Online:2021-07-23
Published:2021-08-05
Contact:
Zhemei FANG
CLC Number:
Liupengcheng YUAN, Zhemei FANG, Jianbo WANG, Xiaozhen QIN. CRC-MATE based method for system-of-systems architecture alternative selection[J]. Systems Engineering and Electronics, 2021, 43(8): 2146-2153.
Table 3
Capability-risk-cost datas of each alternative"
| 序号 | 能力 | 风险 | 成本/亿美元 |
| 1 | 83.31 | 9.62 | 292.63 |
| 2 | 85.1 | 20.13 | 293.63 |
| 3 | 84.89 | 32.89 | 294.63 |
| 4 | 84.96 | 46.01 | 295.63 |
| 4 093 | 83.08 | 12.74 | 389.64 |
| 4 094 | 84.86 | 21.38 | 390.64 |
| 4 095 | 85.35 | 33.56 | 391.64 |
| 4 096 | 84.87 | 43.78 | 392.64 |
| 1 | U.S. Department of Defense, National Defense Research Institute. Portfolio-analysis methods for assessing capability options[R]. Santa Monica: Rand Corporation, 2008. |
| 2 | POOLE B H. A methodology for the robustness-based evaluation of systems-of-systems alternatives using regret analysis[D]. Atlanta: Georgia Institute of Technology, 2008. |
| 3 |
DAVENDRALINGAM N , DELAURENTIS D . A robust portfolio optimization approach to system of system architectures[J]. Systems Engineering, 2015, 18 (3): 269- 283.
doi: 10.1002/sys.21302 |
| 4 | ROSS A M. Multi-attribute tradespace exploration with concurrent design as a value-centric framework for space system architecture and design[D]. Cambridge: Massachusetts Institute of Technology, 2003. |
| 5 | RICHARDS M G , ROSS A M , SHAH N B , et al. Metrics for evaluating survivability in dynamic multi-attribute tradespace exploration[J]. Journal of Spacecraft & Rockets, 2009, 46 (5): 1049- 1064. |
| 6 | 张骁雄. 武器装备多能力领域组合选择与决策方法研究[D]. 长沙: 国防科技大学, 2018. |
| ZHANG X X. Multi-capability areas weapon system portfolio selection and decision making methods[D]. Changsha: National University of Defense Technology, 2018. | |
| 7 |
ZHANG X X , HIPEL K W , TAN Y . Project portfolio selection and scheduling under a fuzzy environment[J]. Memetic Computing, 2019, 11, 391- 406.
doi: 10.1007/s12293-019-00282-5 |
| 8 |
ZHANG X X , FANG L P , HIPEL K W , et al. A hybrid project portfolio selection procedure with historical performance consideration[J]. Expert Systems with Applications, 2020, 142, 113003.
doi: 10.1016/j.eswa.2019.113003 |
| 9 |
周宇, 杨克巍, 姜江, 等. 面向武器装备体系组合规划的集成决策优化框架[J]. 国防科技大学学报, 2013, 35 (3): 36- 41.
doi: 10.3969/j.issn.1001-2486.2013.03.007 |
|
ZHOU Y , YANG K W , JIANG J , et al. An integrated decision making and optimization framework for system of armament systems portfolio planning[J]. Journal of National University of Defense Technology, 2013, 35 (3): 36- 41.
doi: 10.3969/j.issn.1001-2486.2013.03.007 |
|
| 10 | 夏博远, 赵青松, 张骁雄, 等. 基于动态能力需求的鲁棒性武器系统组合决策[J]. 系统工程与电子技术, 2017, 39 (6): 1280- 1286. |
| XIA B Y , ZHAO Q S , ZHANG X X , et al. Robust weapon system portfolio decision based on dynamic capability requirements[J]. Systems Engineering and Electronics, 2017, 39 (6): 1280- 1286. | |
| 11 |
WEI H C , XIA B Y , YANG Z W , et al. Model and data-driven system portfolio selection based on value and risk[J]. Applied Sciences, 2019, 9 (8): 1657- 1675.
doi: 10.3390/app9081657 |
| 12 | 李瑞阳, 王智学, 禹明刚, 等. 基于鲁棒能力的体系多目标组合优化[J]. 系统工程与电子技术, 2019, 41 (5): 1034- 1042. |
| LI R Y , WANG Z X , YU M G , et al. Multi-objective portfolio optimization of system-of-systems based on robust capabilities[J]. Systems Engineering and Electronics, 2019, 41 (5): 1034- 1042. | |
| 13 | 陶智刚, 徐浩, 易侃, 等. 基于权衡空间探索分析的C4ISR系统韧性研究[C]//第四届中国指挥控制大会, 2016: 110-115. |
| TAO Z G, XU H, YI K, et al. C4ISR system resilience research based on tradespace exploration analysis[C]//Proc. of the 4th China Conference on Command and Control, 2016: 110-115. | |
| 14 | 张旺勋, 侯洪涛, 王维平. 基于MATE的卫星导航系统安全防护设计[J]. 系统工程与电子技术, 2013, 35 (6): 1231- 1235. |
| ZHANG W X , HOU H T , WANG W P . MATE based design for protection of GNSS[J]. Systems Engineering and Electro-nics, 2013, 35 (6): 1231- 1235. | |
| 15 |
DAVENDRALINGAM N , DELAURENTIS D . An analytic portfolio approach to system of systems evolutions[J]. Procedia Computer Science, 2014, 28, 711- 719.
doi: 10.1016/j.procs.2014.03.085 |
| 16 | GARVEY P R, PINTO C A. Introduction to functional dependency network analysis[C]//Proc. of the 2nd International Symposium on Engineering Systems Massachusetts Institute of Technology, 2009 |
| 17 | GUARINIELLO C, GRANDE M, BRAND C, et al. Quantify-ing the impact of systems interdependencies in space systems architectures[C]//Proc. of the 70th International Astronautical Congress, 2019: 21-25. |
| 18 |
GUARINIELLO C , RAZ A K , FANG Z , et al. System-of-systems tools and techniques for the analysis of cyber-physical systems[J]. Systems Engineering, 2020, 23 (4): 480- 491.
doi: 10.1002/sys.21539 |
| 19 | LUO A M, YI S H, LIU J X, et al. An improved functional dependency network model for information systems effectiveness analysis[C]//Proc. of the International Conference on Wireless Communication and Sensor Networks, 2020: 56-59 |
| 20 | 舒佳康. 基于权衡空间探索的体系韧性分析[D]. 武汉: 华中科技大学, 2019. |
| SHU J K. Evaluating system of systems resilience based on tradespace exploration[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
| 21 |
钟庆, 周剑雄, 秦肖臻, 等. 体系效能的功能依赖网络分析[J]. 兵工自动化, 2017, 36 (6): 52- 55.
doi: 10.7690/bgzdh.2017.06.015 |
|
ZHONG Q , ZHOU J X , QIN X Z , et al. FDNA of SoS effectiveness[J]. Ordnance Industry Automation, 2017, 36 (6): 52- 55.
doi: 10.7690/bgzdh.2017.06.015 |
|
| 22 | 陈宽, 李元元, 罗云峰, 等. 基于功能依赖网络的体系韧性分析[J]. 指挥与控制学报, 2016, 2 (3): 256- 260. |
| CHEN K , LI Y Y , LUO Y F , et al. Evaluating system of systems resilience based on functional dependency network analysis[J]. Journal of Command and Control, 2016, 2 (3): 256- 260. | |
| 23 | 殷加玞, 赵冬梅. 基于全概率风险度量的电力系统备用风险评估方法[J]. 电力自动化设备, 2020, 40 (1): 156- 162. |
| YIN J F , ZHAO D M . Reserve risk assessment method of power system based on total probability risk measure[J]. Electric Power Automation Equipment, 2020, 40 (1): 156- 162. | |
| 24 | ROCKAFELLAR R T , URYASEV S . Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2 (3): 1071- 1074. |
| 25 |
PAUL S , PADHY N P . Resilient scheduling portfolio of residential devices and plug-in electric vehicle by minimizing conditional value at risk[J]. IEEE Trans.on Industrial Informatics, 2019, 15 (3): 1566- 1578.
doi: 10.1109/TII.2018.2847742 |
| 26 |
ARASTEH H , VAHIDINASAB V , SEPASIAN M S , et al. Stochastic system of systems architecture for adaptive expansion of smart distribution grids[J]. IEEE Trans.on Industrial Informatics, 2019, 15 (1): 377- 389.
doi: 10.1109/TII.2018.2808268 |
| 27 | SHAH P, DAVENDRALINGAM N, DELAURENTIS D A. A conditional value-at-risk approach to risk management in system-of-systems architectures[C]//Proc. of the 10th System of Systems Engineering Conference, 2015: 457-462. |
| 28 | 郭红霞, 高瑞, 杨苹. 基于条件风险价值的微电网现货市场两阶段调度[J]. 电网技术, 2019, 43 (8): 2665- 2673. |
| GUO H X , GAO R , YANG P . Two-stage dispatch of microgrid based on CVaRtheory under electricity spot market[J]. Power System Technology, 2019, 43 (8): 2665- 2673. | |
| 29 | URYASEV S. Conditional value-at-risk: optimization algorithms and applications[C]//Proc. of the IEEE/IAFE/INFORMS Confe-rence on Computational Intelligence for Financial Engineering, 2000. |
| 30 | 李天照. 舰艇作战系统全寿命费用估算研究[D]. 北京: 中国舰船研究院, 2016. |
| LI T Z. The research of LCC estimation of ship combat system[D]. Beijing: China Ship Research and Development Academy, 2016. | |
| 31 | VALERDI R. The constructive systems engineering cost model (COSYSMO)[D]. Los Angeles: University of Southern California, 2005. |
| 32 | VALERDI R, BOEHM B W, REIFER D J. COSYSMO: a constructive systems engineering cost model coming of age[C]//Proc. of the International Council on Systems Engineering International Symposium, 2003: 70-82. |
| 33 | DOMERCANT J C. ARC-VM: an architecture real options complexity-based valuation methodology for military systems-of-systems acquisitions[D]. Atlanta: Georgia Institute of Technology, 2011. |
| 34 | PAPKE B, PAVALKIS S, WANG G. Enabling repeatable SE cost estimation with COSYSMO and MBSE[C]// Proc. of the 27th Annual International Council on Systems Engineering International Symposium, 2017. |
| [1] | Shuguang SUN, Qixin WEN. Aircraft height optimization algorithm of integrated navigation in terminal area based on height anomaly compensation [J]. Systems Engineering and Electronics, 2021, 43(9): 2612-2619. |
| [2] | Xinhao DONG, Zhijie ZHOU, Youmin ZHANG, Zhichao FENG, You CAO. Forecasting method of the error coefficient for SIMU based on belief rule base [J]. Systems Engineering and Electronics, 2020, 42(12): 2867-2874. |
| [3] | YIN Yong, ZHOU Zu-de, LIU Quan, LUO Xing, WANG Ji-hong. Design of DC-DC chopper based on sliding mode control theory [J]. Journal of Systems Engineering and Electronics, 2009, 31(9): 2177-2180. |
| [4] | LUO Hang, HUANG Jian-guo, LONG Bing, WANG Hou-jun. Research on failure distribution of samples based on correlation coefficient method [J]. Journal of Systems Engineering and Electronics, 2009, 31(7): 1776-1781. |
| [5] | SONG De-qiang, DUAN Cheng-hua, HUANG Qing-ming. Resource-constrained LB-ACO algorithm for functional pipelines in behavioral synthesis [J]. Journal of Systems Engineering and Electronics, 2009, 31(2): 384-389. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||