Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (8): 2045-2050.doi: 10.12305/j.issn.1001-506X.2021.08.04
• Electronic Technology • Previous Articles Next Articles
Caiyun WANG1,*, Yangyu LI1, Xiaofei LI2, Jianing WANG2, Wenyi WEI1
Received:
2020-09-14
Online:
2021-07-23
Published:
2021-08-05
Contact:
Caiyun WANG
CLC Number:
Caiyun WANG, Yangyu LI, Xiaofei LI, Jianing WANG, Wenyi WEI. Aerial image super-resolution restruction based on sparsity and deep learning[J]. Systems Engineering and Electronics, 2021, 43(8): 2045-2050.
1 | 郭萌. 基于改进POCS的红外弱小目标超分辨率复原算法研究[D]. 吉林: 吉林大学, 2016. |
GUO M. Super-resolution restoration algorithm of small infrared targets based on improved POCS[D]. Jilin: Jilin University, 2016. | |
2 | DAI S S, XIANG H Y, DU Z H, et al. Adaptive regularization of infrared image super-resolution reconstruction[C]//Proc. of the 5th International Conference on Computing, Communications and Networking Technologies, 2014. |
3 |
CASTRO E B , NAKANO M , PEREZ G S , et al. Improvement of image super-resolution algorithms using iterative back projection[J]. IEEE Latin America Transactions, 2017, 15 (11): 2214- 2219.
doi: 10.1109/TLA.2017.8070429 |
4 |
黎海雪, 林海涛, 姜栋瀚. 基于马尔可夫随机场的图像超分辨技术研究综述[J]. 通信技术, 2018, 51 (10): 2356- 2364.
doi: 10.3969/j.issn.1002-0802.2018.10.015 |
LI H X , LIN H T , JIANG D H . Research review of image superresolution based on Markov random field[J]. Communications Technology, 2018, 51 (10): 2356- 2364.
doi: 10.3969/j.issn.1002-0802.2018.10.015 |
|
5 | 熊亚辉, 陈东方, 王晓峰. 基于多尺度反向投影的图像超分辨率重建算法[J]. 计算机工程, 2020, 46 (7): 251- 259. |
XIONG Y H , CHEN D F , WANG X F . Super-resolution image reconstruction algorithm based on multi-scale back projection[J]. Computer Engineering, 2020, 46 (7): 251- 259. | |
6 | FREEMAN W T , JONES T R , PASZTOR E C . Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 2002, (2): 56- 65. |
7 |
DANG C , AGHAGOLZADEH M , RADHA H . Image super-resolution via local self-learning manifold approximation[J]. IEEE Signal Processing Letters, 2014, 21 (10): 1245- 1249.
doi: 10.1109/LSP.2014.2332118 |
8 | 杨学峰, 程耀瑜, 王高. 基于小波域压缩感知的遥感图像超分辨算法[J]. 计算机应用, 2017, 37 (5): 1430- 1433. |
YANG X F , CHENG Y Y , WANG G . A super-resolution algorithm for remote sensing images based on wavelet compressed sensing[J]. Journal of Computer Applications, 2017, 37 (5): 1430- 1433. | |
9 |
王彩云, 胡允侃, 李晓飞, 等. 基于卷积稀疏编码与多分类器融合的雷达HRRP目标识别方法[J]. 系统工程与电子技术, 2018, 40 (11): 2433- 2437.
doi: 10.3969/j.issn.1001-506X.2018.11.07 |
WANG C Y , HU Y K , LI X F , et al. Radar HRRP target recognition based on convolutional sparse coding and multi-classifier fusion[J]. Systems Engineering and Electronics, 2018, 40 (11): 2433- 2437.
doi: 10.3969/j.issn.1001-506X.2018.11.07 |
|
10 | 张万绪, 史剑雄, 陈晓璇, 等. 基于稀疏表示与引导滤波的图像超分辨率重建[J]. 计算机工程, 2018, 44 (9): 212- 217. |
ZHANG W X , SHI J X , CHEN X X , et al. Image super-resolution reconstruction based on sparse representation and guided filtering[J]. Computer Engineering, 2018, 44 (9): 212- 217. | |
11 | TIMOFTE R, DE S V, VAN G L. A+: adjusted anchored neighborhood regression for fast super-resolution[C]//Proc. of the Asian Conference on Computer Vision, 2014: 111-126. |
12 | YANG C Y, YANG M H. Fast direct super-resolution by simple functions[C]//Proc. of the IEEE International Conference on Computer Vision, 2014: 561-568. |
13 |
DONG C , LOY C C , HE K , et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 38 (2): 295- 307.
doi: 10.1109/TPAMI.2015.2439281 |
14 | 吴磊, 吕国强, 薛治天, 等. 基于多尺度递归网络的图像超分辨率重建[J]. 光学学报, 2019, 39 (6): 90- 97. |
WU L , LYU G Q , XUE Z T , et al. Super-resolution reconstruction of images based on multi-scale recursive network[J]. Acta Optica Sinica, 2019, 39 (6): 90- 97. | |
15 | WANG Y, ZHENG J C. Real-time face detection based on YOLO[C]//Proc. of the IEEE 1st International Conference on Knowledge Innovation and Invention, 2018: 221-224. |
16 | 刘帆, 刘鹏远, 李兵, 等. TensorFlow平台下的视频目标跟踪深度学习模型设计[J]. 激光与光电子学进展, 2017, 54 (9): 277- 285. |
LIU F , LIU P Y , LI B , et al. Design of video target tracking depth learning model under TensorFlow platform[J]. Laser & Optoelectronics Progress, 2017, 54 (9): 277- 285. | |
17 | 朱新山, 姚思如, 孙彪, 等. 图像质量评价: 融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报, 2018, 50 (5): 121- 128. |
ZHU X S , YAO S R , SUN B , et al. Image quality evaluation: fusion of visual characteristics and structural similarity indicators[J]. Journal of Harbin Institute of Technology, 2018, 50 (5): 121- 128. | |
18 | PREEDANAN W, KONDO T, BUNNUN P, et al. Image quality assessment for medical images based on gradient information[C]//Proc. of the 5th International Conference on Business and Industrial Research, 2018: 189-194. |
19 |
XUE W , ZHANG L , MOU X , et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Trans.on Image Processing, 2014, 23 (2): 684- 695.
doi: 10.1109/TIP.2013.2293423 |
20 | DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proc. of the European Conference on Computer Vision, 2016: 391-407. |
21 | LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proc. of IEEE International Conference on Computer Vision, 2017: 2755-2762. |
[1] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[2] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[3] | Limin ZHANG, Kaiwen TAN, Wenjun YAN, Yuyuan ZHANG. Radar emitter recognition based on multi-level jumper residual network [J]. Systems Engineering and Electronics, 2022, 44(7): 2148-2156. |
[4] | Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network [J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822. |
[5] | Juan WEI, Huangwei YANG, Fangli NING. Acoustic scene classification based on joint optimization of NMF and CNN [J]. Systems Engineering and Electronics, 2022, 44(5): 1433-1438. |
[6] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[7] | Hong ZOU, Chenyang BAI, Peng HE, Yaping CUI, Ruyan WANG, Dapeng WU. Edge service placement strategy based on distributed deep learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1728-1737. |
[8] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[9] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[10] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
[11] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[12] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
[13] | Yunxiang YAO, Ying CHEN. Target tracking network based on dual-modal interactive fusion under attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 410-419. |
[14] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[15] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||