Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (2): 508-518.doi: 10.12305/j.issn.1001-506X.2021.02.25
• Guidance, Navigation and Control • Previous Articles Next Articles
Xiaoman KE(
), Yunhua WU(
), Mohong ZHENG(
), Wenxing LI(
), Jinming DU(
), Bing HUA(
), Zhiming CHEN(
)
Received:2020-06-01
Online:2021-02-01
Published:2021-03-16
CLC Number:
Xiaoman KE, Yunhua WU, Mohong ZHENG, Wenxing LI, Jinming DU, Bing HUA, Zhiming CHEN. Attitude control for spacecraft with uncertain parameters based on improved iterative learning[J]. Systems Engineering and Electronics, 2021, 43(2): 508-518.
Table 1
Controller parameters"
| 参数 | 取值 |
| 转动惯量不确定性χ/% | 50 |
| 转动惯量J/(kg·m2) | |
| 控制约束U/(N·m) | 0.05 |
| 最大机动角速度ωmax/((°)/s) | 2.5 |
| 最大机动角加速度a/((°)/s2) | 0.6U[1/Jx 1/Jy 1/Jz] |
| 控制增益p, c, kp, kd | 50, 18, 0.1, 0.4 |
| 采样周期δ/s | 0.1 |
| 反步法控制器参数 α, b1, b2, b3, b4, b5, b6 | 0.25, 5, 5, 5, 0.01, diag(10.6, 10.2, 10.4), 0.004 |
Table 2
Hybrid actuator parameters"
| 参数 | 量值 |
| CMG转子动量矩h0/(N·m·s) | 0.4 |
| CMG框架倾角β/(°) | 54.04 |
| CMG框架角初值α0/(°) | [30, 70, 40, -100] |
| CMG框架角速度最大值ȧmax/(rad/s) | 1 |
| RW转动惯量JRW/(kg·m2) | diag(35, 35, 35)10-4 |
| RW角速度初值Ω0/(r/min) | [25/6 25/6 25/6] |
| RW角速度最大值Ωmax/(r/min) | 3 000 |
| RW角加速度 最大值 | 10 |
| 加权矩阵W | diag(5, 5, 5, 5, 500, 500, 500) |
| 零运动强度 | 180exp(-10SCMG) |
| 性能函数参数 τ1, τ2, λ1, λ2, λ3 | 80, 100, 1/9, 5/9, 3/9 |
| 1 | 王雪瑶, 宋博. 美国国防高级研究计划局启动"地球同步轨道卫星自主服务"项目[J]. 国际太空, 2016, 37 (11): 33- 38. |
| WANG X Y , SONG B . DARPA started the RSGS program[J]. Space International, 2016, 37 (11): 33- 38. | |
| 2 |
GUO Y , HUANG B , SONG S M , et al. Robust saturated finite-time attitude control for spacecraft using integral sliding mode[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (2): 440- 446.
doi: 10.2514/1.G003520 |
| 3 | CAO T , GONG H J , HAN B . Sliding mode fault tolerant attitude control scheme for spacecraft with actuator faults[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36 (1): 123- 131. |
| 4 |
CONG B L , LIU X D , CHEN Z . Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers[J]. Aerospace Science and Technology, 2013, 30 (1): 1- 7.
doi: 10.1016/j.ast.2013.05.005 |
| 5 |
THAKUR D , SRIKANT S , AKELLA M R . Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters[J]. Journal of Guidance, Control, and Dynamics, 2015, 38 (1): 41- 52.
doi: 10.2514/1.G000457 |
| 6 |
SUN L , ZHENG Z W . Saturated adaptive hierarchical fuzzy attitude-tracking control of rigid spacecraft with modeling and measurement uncertainties[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (5): 3742- 3751.
doi: 10.1109/TIE.2018.2856204 |
| 7 |
BI X T , SHI X P . Attitude stabilization of rigid spacecraft implemented in backstepping control with input delay[J]. Journal of Systems Engineering and Electronics, 2017, 28 (5): 955- 962.
doi: 10.21629/JSEE.2017.05.13 |
| 8 | 李波, 胡庆雷, 石忠, 等. 基于反步法与动态控制分配的航天器姿态机动控制[J]. 控制理论与应用, 2012, (11): 1419- 1425. |
| LI B , HU Q L , SHI Z , et al. Backstepping and dynamic control-allocation for attitude maneuver spacecraft with redundant reaction fly-wheels[J]. Control Theory & Applications, 2012, (11): 1419- 1425. | |
| 9 |
WU Y H , ZHENG M H , HE W , et al. High precision attitude dynamic tracking control of a moving space target[J]. Chinese Journal of Aeronautics, 2019, 32 (10): 2324- 2336.
doi: 10.1016/j.cja.2019.06.005 |
| 10 | 孙明轩, 黄宝健. 迭代学习控制[M]. 北京: 国防工业出版社, 1999. |
| SUN M X , HUANG B J . Iterative learning control[M]. Beijing: National Defense Industry Press, 1999. | |
| 11 | 代明光, 齐蓉, 李兵强, 等. 具有自适应非线性增益的开环PD型迭代学习控制[J]. 系统工程与电子技术, 2020, 42 (3): 660- 666. |
| DAI M G , QI R , LI B Q , et al. Open-loop PD-type iterative learning control with adaptive nonlinear gain[J]. Systems Engineering and Electronics, 2020, 42 (3): 660- 666. | |
| 12 |
WANG D W . On D-type and P-type ILC designs and anticipatory approach[J]. International Journal of Control, 2000, 73 (10): 890- 901.
doi: 10.1080/002071700405879 |
| 13 |
WU B L , WANG D W , POH E K . High precision satellite attitude tracking control via iterative learning control[J]. Journal of Guidance, Control, and Dynamics, 2015, 38 (3): 528- 534.
doi: 10.2514/1.G000497 |
| 14 | HU Q L , NIU G L , WANG C L . Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation[J]. Aerospace Science and Technology, 2018, 75 (4): 245- 253. |
| 15 | LEE H J , KIM Y D , KIM H S . Satellite attitude control with a modified iterative learning law for the decrease in the effectiveness of the actuator[J]. International Journal of Aeronautical & Space Sciences, 2010, 11 (2): 87- 97. |
| 16 |
ZHANG L J , YU C M , ZHANG S F , et al. Optimal attitude trajectory planning method for CMG actuated spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, 2018, 232 (1): 131- 142.
doi: 10.1177/0954410016687596 |
| 17 |
张佳为, 马克茂, 孟桂芝. 具有单框架控制力矩陀螺航天器的建模及可控性分析[J]. 系统工程与电子技术, 2012, 34 (4): 761- 766.
doi: 10.3969/j.issn.1001-506X.2012.04.22 |
|
ZHANG J W , MA K M , MENG G Z . Modeling of spacecraft attitude systems with single gimbal control moment gyros and controllability analysis[J]. Systems Engineering and Electronics, 2012, 34 (4): 761- 766.
doi: 10.3969/j.issn.1001-506X.2012.04.22 |
|
| 18 | WIE B . Singularity escape/avoidance steering logic for control moment gyro systems[J]. Journal of Guidance, Control, and Dynamics, 2003, 28 (5): 948- 956. |
| 19 |
KARLGAARD C D . Robust reorientation and power controller using flywheels and control moment gyroscopes[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (1): 217- 220.
doi: 10.2514/1.17113 |
| 20 | WU Y H , HAN F , ZHANG S J , et al. Attitude agile maneuvering control for spacecraft equipped with hybrid actuators[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (3): 803- 812. |
| 21 |
HUANG X H , JIA Y H , XU S J , et al. A new steering approach for VSCMGs with high precision[J]. Chinese Journal of Aeronautics, 2016, 29 (6): 1673- 1684.
doi: 10.1016/j.cja.2016.10.017 |
| 22 |
BRISTOW D A , THARAYIL M , ALLEYNE A G . A survey of iterative learning control[J]. IEEE Control Systems Magazine, 2006, 26 (3): 96- 114.
doi: 10.1109/MCS.2006.1636313 |
| 23 |
WIE B , LU J . Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints[J]. Journal of Guidance, Control, and Dynamics, 1995, 18 (6): 1372- 1379.
doi: 10.2514/3.21555 |
| 24 |
WIE B , BAILEY D , HEIBERG C . Rapid multitarget acquisition and pointing control of agile spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25 (1): 96- 104.
doi: 10.2514/2.4854 |
| 25 | KOJIMA H. Singularity analysis and steering control laws for adaptive-skew pyramid-type control moment gyros[C]//Proc.of the 62nd International Astronautical Congress, 2013: 120-137. |
| 26 | WU Y H , HAN F , HUA B , et al. Null motion strategy for spacecraft large angle agile maneuvering using hybrid actuators[J]. Acta Astronautica, 2017, 140 (11): 459- 468. |
| [1] | Mingguang DAI, Rong QI, Bingqiang LI, Yiyun ZHAO. Open-loop PD-type iterative learning control with adaptive nonlinear gain [J]. Systems Engineering and Electronics, 2020, 42(3): 660-666. |
| [2] | LIU Zhenya, GAO Min, CHENG Cheng. Line-of-sight angle estimation algorithm based on ideal trajectory robust cubature Kalman filter [J]. Systems Engineering and Electronics, 2018, 40(2): 409-416. |
| [3] | LAN Tianyi, LIN Hui. Accelerated iterative learning control algorithm with variable gain and adjustment of learning interval [J]. Systems Engineering and Electronics, 2017, 39(4): 883-887. |
| [4] | ZHANG Kejun, PENG Guohua. Convergence analysis of PDα-type fractional-order iterative learning control in the sense of Lp norm [J]. Systems Engineering and Electronics, 2017, 39(10): 2285-2290. |
| [5] | YIN Yanling1, WANG Taihua1, ZENG Qi2. Networkbased iterative learning control design based on 2D model [J]. Systems Engineering and Electronics, 2015, 37(5): 1157-1162. |
| [6] | LI Xiangyang. Iterative learning control based on equivalent control [J]. Systems Engineering and Electronics, 2014, 36(7): 1397-1404. |
| [7] | HUANG Li-xun, FANG Yong. Convergence analysis of iterative learning control system in the presence of data dropouts [J]. Systems Engineering and Electronics, 2014, 36(2): 361-367. |
| [8] | LAN Yong-hong,HE Lü-jun,HUANG Hui-xian, LUO Yi-ping. P-type iterative learning control of fractional order nonlinear time-delay system [J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 1070-1074. |
| [9] | JIANG Xiao-ming, WANG Yan, WANG Cheng, CHEN Xing-lin. Robust iterative learning control and its application to high precision test bench [J]. Journal of Systems Engineering and Electronics, 2013, 35(3): 601-608. |
| [10] | YAN Bing-yong, WANG Hua-zhong. Novel fault diagnosis approach based on fault tracking approximator [J]. Journal of Systems Engineering and Electronics, 2013, 35(2): 377-380. |
| [11] | LI Jiancheng, XI Tao. Spacecraft attitude control scheme based on sliding mode controller with iterative learning law [J]. Journal of Systems Engineering and Electronics, 2012, 34(9): 1895-1899. |
| [12] | CAO Wei, CONG Wang, SUN Ming. Iterative learning control of variable index gain with initial state study [J]. Journal of Systems Engineering and Electronics, 2012, 34(4): 773-777. |
| [13] | DAI Xi-sheng, TIAN Sen-ping. Iterative learning control for uncertain linear distributed parameter systems with control delay [J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2117-2120. |
| [14] | CAO Wei, CONG Wang, SUN Ming. Fault diagnosis algorithm based on proportional difference type iteration learning [J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2106-2109. |
| [15] | JIA Qingxian, ZHANG Yingchun, SHEN Yi, WU Lina. Robust fault reconstruction method for satellite attitude control system based on iterative learningunknown input observer [J]. Journal of Systems Engineering and Electronics, 2012, 34(1): 120-124. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||