Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (12): 2802-2810.doi: 10.3969/j.issn.1001-506X.2020.12.17
Previous Articles Next Articles
Hao LIU1(), Yan XING2(
), Shijie WU3(
)
Received:
2019-10-25
Online:
2020-12-01
Published:
2020-11-27
CLC Number:
Hao LIU, Yan XING, Shijie WU. Value evaluation of joint fire strike target based on system-of-systems attack[J]. Systems Engineering and Electronics, 2020, 42(12): 2802-2810.
Table 1
Target attribute table"
目标名称 | 目标分类 | T1 | T2 | T3 | T4 |
W防空导弹阵地 | 火力打击目标 | 9 | 9 | 4 | 4 |
B防空导弹阵地 | 火力打击目标 | 9 | 9 | 4 | 4 |
E防空导弹阵地 | 火力打击目标 | 7 | 9 | 4 | 4 |
F防空导弹阵地 | 火力打击目标 | 7 | 9 | 4 | 4 |
H防空导弹阵地 | 火力打击目标 | 9 | 9 | 4 | 4 |
I防空导弹阵地 | 火力打击目标 | 7 | 9 | 4 | 4 |
K防空导弹“天龙”阵地 | 火力打击目标 | 4 | 9 | 4 | 5 |
N防空导弹阵地 | 火力打击目标 | 5 | 9 | 4 | 4 |
R防空导弹阵地 | 火力打击目标 | 9 | 9 | 4 | 4 |
S防空导弹阵地 | 火力打击目标 | 9 | 9 | 4 | 4 |
Z空军基地 | 火力打击目标 | 8 | 9 | 7 | 1 |
第1-1飞弹营1连 | 火力打击目标 | 3 | 9 | 3 | 6 |
第1-1飞弹营2连 | 火力打击目标 | 3 | 9 | 3 | 6 |
第3中队 | 火力打击目标 | 1 | 9 | 3 | 8 |
C南部远程预警雷达站 | 侦察情报目标 | 9 | 6 | 2 | 4 |
L远程预警雷达站 | 侦察情报目标 | 9 | 6 | 2 | 4 |
J防卫指挥部 | 指挥控制目标 | 8 | 5 | 8 | 2 |
M防卫指挥部 | 指挥控制目标 | 8 | 5 | 8 | 2 |
O防卫指挥部 | 指挥控制目标 | 6 | 5 | 8 | 2 |
P防卫指挥部 | 指挥控制目标 | 6 | 5 | 8 | 2 |
参谋本部 | 指挥控制目标 | 9 | 5 | 9 | 1 |
国防部 | 指挥控制目标 | 6 | 5 | 8 | 1 |
海军A特遣部队指挥中心 | 指挥控制目标 | 5 | 5 | 8 | 3 |
空军作战指挥部 | 指挥控制目标 | 7 | 5 | 8 | 2 |
陆军第1-3军团指挥部 | 指挥控制目标 | 5 | 5 | 8 | 3 |
陆军第1-5军团指挥部 | 指挥控制目标 | 5 | 5 | 8 | 3 |
Table 2
Comparison of attribute fusion algorithms"
排名 | 熵权法 | 熵权法 | 熵权理想点法 | |||||
目标名称 | 评分 | 目标名称 | 评分 | 目标名称 | 评分 | |||
1 | W防空导弹阵地 | 0.47 | W防空导弹阵地 | 0.70 | L远程预警雷达站 | 0.71 | ||
2 | R防空导弹阵地 | 0.47 | R防空导弹阵地 | 0.70 | C南部远程预警雷达站 | 0.71 | ||
3 | B防空导弹阵地 | 0.47 | B防空导弹阵地 | 0.70 | W防空导弹阵地 | 0.68 | ||
4 | H防空导弹阵地 | 0.47 | H防空导弹阵地 | 0.70 | R防空导弹阵地 | 0.68 | ||
5 | S防空导弹阵地 | 0.47 | S防空导弹阵地 | 0.70 | B防空导弹阵地 | 0.68 | ||
6 | L远程预警雷达站 | 0.47 | L远程预警雷达站 | 0.69 | H防空导弹阵地 | 0.68 | ||
7 | C南部远程预警雷达站 | 0.47 | C南部远程预警雷达站 | 0.69 | S防空导弹阵地 | 0.68 | ||
8 | E防空导弹阵地 | 0.42 | E防空导弹阵地 | 0.67 | E防空导弹阵地 | 0.64 | ||
9 | I防空导弹阵地 | 0.42 | I防空导弹阵地 | 0.67 | I防空导弹阵地 | 0.64 | ||
10 | F防空导弹阵地 | 0.42 | F防空导弹阵地 | 0.67 | F防空导弹阵地 | 0.64 |
Table 4
System-of-systems value evaluation of top 10 target combinations"
排名 | 目标1 | 目标2 | 体系价值/% |
第1名 | 国防部 | 参谋本部 | 14.02 |
第2名 | 国防部 | 空军作战指挥部 | 13.53 |
第3名 | 国防部 | P防卫指挥部 | 13.08 |
第4名 | 国防部 | 陆军第1-3军团指挥部 | 13.06 |
第5名 | 国防部 | 海军A特遣部队指挥中心 | 13.03 |
第6名 | 国防部 | J防卫指挥部 | 13.00 |
第7名 | 国防部 | M防卫指挥部 | 13.00 |
第8名 | 国防部 | Z空军基地 | 12.94 |
第9名 | 国防部 | O防卫指挥部 | 12.93 |
第10名 | 国防部 | 陆军第1-5军团指挥部 | 12.88 |
1 | 姜志鹏, 张多林, 邢清华. 给定任务和模式下指挥体系节点重要性评估方法[J]. 火力与指挥控制, 2015, 40 (6): 10- 13. |
JIANG Z P , ZHANG D L , XING Q H . Research on evaluation method for node importance of command system-of-systems architecture based on given task and mode[J]. Fire Control & Command Control, 2015, 40 (6): 10- 13. | |
2 | WANG Y , LI J , HUANG W L , et al. Dynamic weapon target assignment based on intuitionistic fuzzy entropy of discrete particle swarm[J]. China Communications, 2017, 14 (1): 169- 179. |
3 | ZHAO M , ZHAO L L , SU X H , et al. Improved discrete mapping differential evolution for multi-unmanned aerial vehicles cooperative multi-targets assignment under unified model[J]. International Journal of Machine Learning & Cybernetics, 2017, 8 (3): 765- 780. |
4 | 司光亚, 王飞, 刘洋. 基于仿真大数据的体系分析方法研究[J]. 系统仿真学报, 2019, 31 (3): 511- 519. |
SI G Y , WANG F , LIU Y . System analysis method based on simulation big data[J]. Journal of System Simulation, 2019, 31 (3): 511- 519. | |
5 | ZHOU Y L, LI X B, ZHU Y F, et al. A discrete particle swarm optimization algorithm applied in constrained static weapon-target assignment problem[C]//Proc.of the 12th World Congress on Intelligent Control and Automation (WCICA), 2016: 3118-3123. |
6 |
AHNER D K , PARSON C R . Optimal multi-stage allocation of weapons to targets using adaptive dynamic programming[J]. Optimization Letters, 2015, 9 (8): 1689- 1701.
doi: 10.1007/s11590-014-0823-x |
7 | SHI S N , SHUI P L . Detection of low-velocity and floating small targets in sea clutter via income reference particle filters[J]. Signal Processing, 2018, 148 (4): 78- 90. |
8 | 王宏宇, 吴纬, 魏艳艳. 基于超网络模型武器装备体系抗毁性分析[J]. 系统工程与电子技术, 2017, 39 (8): 1782- 1787. |
WANG H Y , WU W , WEI Y Y . Weapon system-of systems invulnerability analysis based on super network model[J]. Systems Engineering and Electronics, 2017, 39 (8): 1782- 1787. | |
9 | NG B, ROSENBERG L, NGUYEN S T N. Target detection in sea clutter using resonance based signal decomposition[C]//Proc.of the IEEE Radar Conference, 2016. |
10 | QIN H I , HAN J J , XIANG Z , et al. Infrared small moving target detection using sparse representation-based image decomposition[J]. Infrared Physics & Technology, 2016, 76 (2): 148- 156. |
11 |
CHEN X L , CHEN W , WANG X , et al. Sparsity-optimized separation of body waves and ground-roll by constructing dictionaries using tunable Q-factor wavelet transforms with diffe-rent Q-factors[J]. Geophysical Journal Internationa1, 2017, 211 (1): 621- 636.
doi: 10.1093/gji/ggx332 |
12 | 李尔玉, 龚建兴, 黄健, 等. 基于功能链的作战体系复杂网络节点重要性评价方法[J]. 指挥与控制学报, 2018, 4 (1): 42- 49. |
LI E Y , GONG J X , HUANG J , et al. Node importance analysis of complex networks for combat systems based o function chain[J]. Journal of Command and Control, 2018, 4 (1): 42- 49. | |
13 |
LIU Z , GAO X G , FU X W . A cooperative search and coverage algorithm with control lable revisit and connectivity maintenance for multiple unmanned aerial vehicles[J]. Sensors, 2018, 18 (5): 1472- 1506.
doi: 10.3390/s18051472 |
14 | TAVASSOLIPOUR M , MOTAHARI S A , SHALMANI M T . Learning of Gaussian processes in distributed and communication limited systems[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, PP (99): 1- 14. |
15 | 程贲, 谭跃进, 黄魏. 基于能力需求视角的武器装备体系评估[J]. 系统工程与电子技术, 2011, 33 (2): 320- 323. |
CHENG B , TAN Y J , HUANG W . Weapon system-of-systems evaluation based on capability requirement perspective[J]. Systems Engineering and Electronics, 2011, 33 (2): 320- 323. | |
16 | ZHAO Q S , LI S F , DOU Y J , et al. An approach for weapon system-of-systems scheme generation based on a super net work granular analysis[J]. IEEE Systems Journal, 2015, 11 (4): 1971- 1982. |
17 | DANELLJAN M, SHAT G, KHAN F S, et al. Efficient convolution operators for tracking[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6931-6939. |
18 | 昝翔, 陈春良, 张仕新. 考虑权重演化的装备重要度动态评估方法[J]. 系统工程与电子技术, 2017, 39 (9): 2022- 2030. |
CHU X , CHEN C L , ZHANG S X . Dynamic evaluation method for equipment important degree considering weight-evolving[J]. Systems Engineering and Electronics, 2017, 39 (9): 2022- 2030. | |
19 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-16]. https://arxiv.org/abs/1409.1556. |
20 | YOO S, YUN K, CHOI J Y, et al. Action-decision networks for visual tracking with deep reinforcement learning[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1349-1358. |
21 | 刘彦, 陈春良, 昝翔. 考虑双层耦合复杂网络的装备重要度评估方法[J]. 兵工学报, 2018, 39 (9): 1829- 1840. |
LIU Y , CHEN C L , CHU X . Evaluation method for equipment importance considering Bi-layer coupled complex network[J]. Acta ArmamentarⅡ, 2018, 39 (9): 1829- 1840. | |
22 | VERBERT K A J , DE SCHUTTER B H K , BABUSKA R . Timely condition-based maintenance planning for multi-component systems[J]. Reliability Engineering & System Safety, 2017, 159 (3): 310- 321. |
23 |
ALASWAD S , CASSADY R , POHL E A , et al. A model of system limiting availability under imperfect maintenance[J]. Journal of Quality in Maintenance Engineering, 2017, 23 (4): 415- 436.
doi: 10.1108/JQME-06-2016-0024 |
24 | 李锴, 吴纬, 刘福胜. 基于PageRank算法的武器装备体系重要节点评估[J]. 火力与指挥控制, 2017, 42 (11): 34- 37. |
LI K , WU W , LIU F S . Evaluating nodes importance in equipment system-of-systems based on PageRank algorithm[J]. Fire Control & Command Control, 2017, 42 (11): 34- 37. | |
25 | NGUYEN K A , DO P , GRALL A . Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum's structural importance[J]. Reliability Engineering & System Safety, 2017, 168 (10): 249- 261. |
26 | LIN Z L , HUANG Y S , FANG C C . Non-periodic preventive maintenance with reliability the thresholds for complex repairable systems[J]. Reliability Engineering & System Safety, 2015, 136 (4): 145- 156. |
27 |
CHEN Z , XIA T B , PAN E S . Optimal multi-level classification and preventive maintenance policy for highly reliable products[J]. International Journal of Production Research, 2017, 55 (8): 2232- 2250.
doi: 10.1080/00207543.2016.1232497 |
28 | DOYEN L , GAUDOIN O , SYAMSUNDAR A . On geometric reduction of age or intensity models for imperfect maintenance[J]. Reliability Engineering & System Safety, 2017, 168 (10): 40- 52. |
29 | GUI G , SHENG U , HE J , et al. Ship detection using compact polarimetric SAR based on the notch filter[J]. IEEE Trans.on Geoscience & Remote Sensing, 2018, 56 (9): 5380- 5393. |
30 | JIAO J , ZHANG Y , SUN H , et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6 (1): 20881- 20892. |
31 | 李尔玉, 龚建兴, 黄健. 基于功能链的融合网络功能抗毁性评估[J]. 兵工学报, 2019, 40 (7): 1450- 1459. |
LI E Y , GONG J X , HUANG J . Analysis about functional invulnerability of convergent network based on function chain[J]. Acta ArmamentarⅡ, 2019, 40 (7): 1450- 1459. | |
32 | ZHANG X, ZOU Y, SHI W. Dilated convolution neural network with leaky ReLU for environmental sound classification[C]//Proc.of the IEEE 22nd International Conference on Digital Signal Processing, 2017. |
33 | KIM J H , KIM W C , KWON D G , et al. Robust equity portfolio performance[J]. Annals of Operations Research, 2018, 266 (2): 1- 20. |
34 | 马纪, 刘希喆. 基于序关系-熵权法的低压配网台区健康状态评估[J]. 电力系统保护与控制, 2017, 45 (6): 87- 93. |
MA J , LIU X Z . Evaluation of health status of low-voltage distribution network based on order relation-entropy weight method[J]. Power System Protection and Control, 2017, 45 (6): 87- 93. | |
35 |
DRAUDVILIENE I , MESKUOTIENE A , RAISUTIS R , et al. The capability assessment of the spectrum decomposition technique for measurements of the group velocity of lamb waves[J]. Journal of Nondestructive Evaluation, 2018, 37 (2): 29- 42.
doi: 10.1007/s10921-018-0484-2 |
36 |
DEB K , JAIN H . An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Trans.on Evolutionary Computation, 2014, 18 (4): 577- 601.
doi: 10.1109/TEVC.2013.2281535 |
37 |
MAHAJAN A , DAFNOMILIS I , HANCOCK V , et al. Assensing the representativeness of durability tests for wood pellets by DEM simulation-comparing conditions in a durability test with transfer chutes[J]. The European Physical Journal Conferences, 2017, 140, ID 15004.
doi: 10.1051/epjconf/201714015004 |
[1] | Tongliang LU, Wenhao CHEN, Bingfeng GE, Qiling DENG. Multi-layer network modeling for combat system-of-systems under information support [J]. Systems Engineering and Electronics, 2022, 44(2): 520-528. |
[2] | Xin ZHOU, Weiping WANG, Yifan ZHU, Tao WANG, Tian JING. Unmanned equipment SoS architecture scheme space searchingmethod based on the sequential allocated mechanism [J]. Systems Engineering and Electronics, 2021, 43(11): 3211-3219. |
[3] | WANG Shou-biao, LI Xin-ming, LIU Dong. Super-network model of architecture for weapon equipment system of systems based on granular computing [J]. Systems Engineering and Electronics, 2016, 38(4): 836-843. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||