Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (4): 896-903.doi: 10.3969/j.issn.1001-506X.2020.04.21
Previous Articles Next Articles
Luyi YANG(), Haiyang LI(
), Jin ZHANG(
), Wanmeng ZHOU(
), Lin LU(
)
Received:
2019-09-16
Online:
2020-03-28
Published:
2020-03-28
Supported by:
CLC Number:
Luyi YANG, Haiyang LI, Jin ZHANG, Wanmeng ZHOU, Lin LU. Fast Moon-to-Earth return orbit design based on improved multi-conic method[J]. Systems Engineering and Electronics, 2020, 42(4): 896-903.
Table 2
ETOs using two methods"
参数 | 多圆锥截线法 | 高精度模型 | 多圆锥截线法 | 高精度模型 | |
设计参数 | 近地点时刻tA | 2028年4月17日 19:04:42.62 | 2028年4月17日 19:07:50.37 | 2028年5月2日 7:48:46.54 | 2028年5月2日 7:51:38.67 |
近月点经度λprl | 181.92 | 181.95 | 182.26 | 182.28 | |
近地脉冲vA/(m/s) | 3 120.73 | 3 122.36 | 3 113.42 | 3 115.04 | |
纬度幅角uL/(°) | -6.71 | -6.65 | 174.12 | 174.18 | |
近月点参数 | 倾角iLLO(°) | 90.00 | 90.00 | 90.00 | 90.00 |
升交点经度ΩLLO(°) | 140.58 | 140.60 | 147.45 | 147.48 | |
高度hLLO/km | 200.00 | 200.00 | 200.00 | 200.00 | |
纬度幅角uLLO/(°) | 236.98 | 236.94 | 50.67 | 50.62 | |
近月脉冲vB/(m/s) | 941.00 | 941.15 | 907.31 | 907.22 | |
计算时间/s | 0.437 | 47.81 | 0.569 | 53.24 |
1 | WU W R , LI C L , ZUO W , et al. Lunar farside to be explored by Chang'e-4[J]. Nature Geoscience, 2019, 12 (4): 222- 223. |
2 |
ZHENG Y C , OUYANG Z Y , LI C L , et al. China's lunar exploration program: presemt and future[J]. Planetary and space Science, 2008, 56 (7): 881- 886.
doi: 10.1016/j.pss.2008.01.002 |
3 |
LI J Y , GONG S P , WANG X . Analytical design methods for determining Moon-to-Earth trajectories[J]. Aerospace Science and Technology, 2015, 40, 138- 149.
doi: 10.1016/j.ast.2014.10.016 |
4 | GAO Y F , WANG Z K , ZHANG Y L . Analytical design methods for transfer trajectories between the earth and the Lunar Orbital Station[J]. Astrophysics and Space Science, 2018, 363 (206): 1- 12. |
5 |
SHEN H X , ZHOU J P , PENG Q B , et al. Point return orbit design and characteristics analysis for manned lunar mission[J]. Science China Technological Sciences, 2012, 55 (9): 2561- 2569.
doi: 10.1007/s11431-012-4969-4 |
6 | 陆林, 杨路易, 李海阳, 等. 载人飞船月地返回轨道优化设计与特性分析[J]. 系统工程与电子技术, 2019, 41 (12): 2842- 2848. |
LU L , YANG L Y , LI H Y , et al. Optimal design and characteristics analysis of the Moon-Earth return trajectory for manned spacecraft[J]. Systems Engineering and Electronics, 2019, 41 (12): 2842- 2848. | |
7 | FENG F , ZHANG Y S . Application and analysis of an improved multi-conic method in trajectory design of the lunar south pole return mission[J]. Journal of Aerospace Engineering, 2018, 232 (6): 1063- 1076. |
8 |
OCAMPO C A , SAUDEMONT R R . Initial trajectory model for a multi-maneuver moon-to-earth abort sequence[J]. Journal of Guidance, Control and Dynamics, 2010, 33 (4): 1184- 1194.
doi: 10.2514/1.46955 |
9 |
WHITLEY R J , OCAMPO C A , WILLIAMS J . Performance of an autonomous multi-maneuver algorithm for lunar trans-earth injection[J]. Journal of Spacecraft and Rockets, 2012, 49 (1): 165- 174.
doi: 10.2514/1.52710 |
10 | JONES D R , OCAMPO C A . Optimization of impulsive trajectories from a circular orbit to an excess velocity vector[J]. Journal of Guidance, Control and Dynamics, 2012, 35 (1): 234- 244. |
11 |
SHEN H X , CASALINO L . High-accurcy optimal finite-thrust trajectories for Moon escape[J]. Acta Astronautica, 2017, 131, 102- 109.
doi: 10.1016/j.actaastro.2016.11.028 |
12 | 郑爱武, 周建平. 直接再入大气的月地返回窗口搜索策略[J]. 航空学报, 2014, 35 (8): 2243- 2250. |
ZHENG A W , ZHOU J P . A search strategy of back windows for moon-to-earth trajectories directly returning to the earth[J]. Acta Aeronautica Et Astronautica Sinica, 2014, 35 (8): 2243- 2250. | |
13 |
张磊, 于登云, 张熇. 月地转移轨道快速设计与特性分析[J]. 中国空间科学技术, 2011, 31 (3): 62- 70.
doi: 10.3780/j.issn.1000-758X.2011.03.010 |
ZHANG L , YU D Y , ZHANG H . Preliminary Design and characteristic analysis of moon-to-earth transfer trajectories[J]. Chinese Space Science and Technology, 2011, 31 (3): 62- 70.
doi: 10.3780/j.issn.1000-758X.2011.03.010 |
|
14 | 贺波勇, 李海阳, 沈红新, 等. 载人登月着陆窗口与定点返回轨道耦合设计[J]. 国防科技大学学报, 2017, 39 (1): 11- 16. |
HE B Y , LI H Y , SHEN H X , et al. Coupling design of landing window and point return orbit for manned lunar landing mission[J]. Journal of National University of Defense and Technology, 2017, 39 (1): 11- 16. | |
15 | CHUNG M K, WEINSTEIN S. Trajectory design of lunar south pole-aitken Basin sample return mission[C]//Proc.of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2004: 4739-4748. |
16 | EGOROV V A . Certain problems of moon flight dynamics[J]. Doklady Akademii Nauk SSSR(N.S.), 1957, 113, 46- 49. |
17 |
周文艳, 杨维廉. 月球探测器的转移轨道特性分析[J]. 空间科学学报, 2004, 24 (5): 354- 359.
doi: 10.3969/j.issn.0254-6124.2004.05.006 |
ZHOU W Y , YANG W L . Analysis of the characteristics of the transfer trajectory of lunar explorer[J]. Chinese Journal of Space Science, 2004, 24 (5): 354- 359.
doi: 10.3969/j.issn.0254-6124.2004.05.006 |
|
18 | WILSON S W. A pseudostate theory for the approximation of three-body trajectories[C]//Proc.of the AAS/AIAA Astrodynamics Conference, 1970: 70-1061. |
19 | BYRNES D V, HOOPER H L. A fast and accurate method of computing space flight trajectories[C]//Proc.of the AAS/AIAA Astro-dynamics Conference, 1970, 70-1062. |
20 |
RAMANAN R V . Integrated algorithm for lunar transfer trajectories using a pseudostate technique[J]. Journal of Guidance, Control and Dynamics, 2002, 25 (5): 946- 952.
doi: 10.2514/2.4968 |
21 | ROBINSON S, GELLER D. A simple targeting procedure for lunar trans-earth injection[C]//Proc.of the AIAA Guidance, Navigation and Contorl Conference, 2009: 6107. |
22 | LUO Q Q , YIN J F , HAN C . Design of earth-moon free-return trajectories[J]. Journal of Guidance, Control and Dynamics, 2012, 36 (1): 263- 271. |
23 |
ZHOU W M , LI H Y , HE B Y , et al. Fixed-thrust earth-moon free return orbit design based on a hybrid multi-conic method of pseudo-perilune parameters[J]. Acta Astronautica, 2019, 160, 365- 377.
doi: 10.1016/j.actaastro.2019.04.034 |
24 |
BAO C C , LI J Y , BAOYIN H X . Two-segment lunar free-return trajectories design using the pseudostate theory[J]. Advances in Space Research, 2018, 61 (1): 97- 110.
doi: 10.1016/j.asr.2017.09.026 |
25 | MURTAZIN R. Space transportation system of a new generation for the lunar space exploration program[C]//Proc.of the 67th International Astronautical Congress (IAC), 2016: IAC-16.D2.4.7.x32426. |
26 | 彭祺擘.基于空间站支持的载人登月方案研究[D].长沙:国防科学技术大学, 2007. |
PENG Q B. Study on the scheme of manned lunar-landing mission supported by space station[D]. Changsha: National University of Defense Technology, 2007. | |
27 | 彭坤, 杨雷. 利用地月间空间站的载人登月飞行模式分析[J]. 宇航学报, 2018, 39 (5): 471- 481. |
PENG K , YANG L . Analysis on human lunar exploration flight modes via cislunar space station[J]. Journal of Astronautics, 2018, 39 (5): 471- 481. | |
28 |
LU P , CERIMELE C J , TIGGES M A , et al. Optimal aerocapture guidance[J]. Journal of Guidance, Control and Dynamics, 2015, 38 (4): 553- 565.
doi: 10.2514/1.G000713 |
29 |
AI Y H , CUI H T , ZHENG Y Y . Identifying method of entry and exit conditions for aerocapture with near minimum fuel consumption[J]. Aerospace Science and Technology, 2016, 58, 582- 593.
doi: 10.1016/j.ast.2016.09.018 |
30 | CHEN Z L , WANG Z K , ZHANG Y L . Analysis and optimization of lunar exploration architecture based on reusable human spacecraft[J]. Journal of Spacecraft and Rockets, 2018, 56 (3): 910- 918. |
31 | GRISHKO D A, LEONOV V V, AYRAPETYAN M A, et al. Preliminary evaluation of multiple atmospheric re-entries in Lunar return missions[C]//Proc.of the IOP Conference Series: Materials Science and Engineering, 2018, 468(1): 012019. |
[1] | Kexin ZHAO, Qingbo GAN, Zhitao YANG, Jing LIU. Multiple-roots problem of initial orbit determination of near-Earth object and space target [J]. Systems Engineering and Electronics, 2022, 44(9): 2914-2921. |
[2] | Dawei LI, Jing LIU, Xiyan PENG, Yao ZHANG, Yanhao XIE. Initial orbit determination for a near-circular orbit of space debris with space-based short-arcs method and experiment [J]. Systems Engineering and Electronics, 2022, 44(8): 2601-2611. |
[3] | Jianlei ZHAO, Haiyang LI. Maneuvering identification method of non-cooperative aircraft based onsparse orbit information [J]. Systems Engineering and Electronics, 2022, 44(6): 1950-1956. |
[4] | Mingren HAN, Yufeng WANG. Optimization method for orbit transfer of all-electric propulsion satellite based on reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1652-1661. |
[5] | Bing HUA, Yingying LIANG, Rui NI. Spacecraft integrated attitude determination method based on improved factor graph model [J]. Systems Engineering and Electronics, 2021, 43(8): 2273-2281. |
[6] | Dan SHEN, Jing LIU. Analysis of the impact of large LEO constellation deployment on the space debris environment [J]. Systems Engineering and Electronics, 2020, 42(9): 2041-2051. |
[7] | Zhitao YANG, Jing LIU, Lin LIU. Improved method of orbit analytical solution and its application [J]. Systems Engineering and Electronics, 2020, 42(2): 427-433. |
[8] | Lin LU, Haiyang LI, Jianghui LIU, Luyi YANG. Optimal design of the Moon-Earth emergency return trajectories [J]. Systems Engineering and Electronics, 2020, 42(2): 420-426. |
[9] | WANG Hong-qiang, FANG Yang-wang, WU You-li. Research on Terminal guidance law of missiles based on nonsingular terminal sliding mode [J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1391-1395. |
[10] | ZHANG Jin-xiu, MU Dong, CAO Xi-bin, CHEN Jun-li. Determination principle of configuration angle on formation design of distributed SAR system [J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1087-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||