Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (3): 603-612.doi: 10.3969/j.issn.1001-506X.2020.03.014
Previous Articles Next Articles
Lixun HAN1(), Bo TIAN1(
), Cunqian FENG1,2(
)
Received:
2019-05-05
Online:
2020-03-01
Published:
2020-02-28
Supported by:
CLC Number:
Lixun HAN, Bo TIAN, Cunqian FENG. Estimating structural parameters of ballistic targets based on MIMO-ISAR[J]. Systems Engineering and Electronics, 2020, 42(3): 603-612.
1 | DAVID L R . Ballistic missile defense[J]. Journal of Electronic Defence, 2006, 29 (1): 46- 52. |
2 |
CHEN V C , LI F Y , HO S S , et al. Analysis of micro-Doppler signatures[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150 (4): 271- 276.
doi: 10.1049/ip-rsn:20030743 |
3 | VICTORIA S . American missile defense[M]. California: Praeger Security International, 2010: 44- 78. |
4 |
RAJUPUT A , IQBAL M A , GUPTA N K . Ballistic performances of concrete targets subjected to long projectile impact[J]. Thin-Walled Structures, 2018, 126, 171- 181.
doi: 10.1016/j.tws.2017.01.021 |
5 |
PENG S W , LI S Y , XUE X X , et al. High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter[J]. Optics Express, 2018, 26 (2): 1978- 1987.
doi: 10.1364/OE.26.001978 |
6 | YANG Q, DENG B, WANG H Q, et al. Parameter estimation of the precessing targets with a wideband Terahertz radar[C]//Proc.of the 43rd IEEE International Conference on Infrared, Millimeter, and Terahertz Waves, 2018. |
7 |
XU Z M , AI X F , WU Q H , et al. Micro-Doppler characteristics of streamlined ballistic target[J]. Electronics Letters, 2019, 55 (3): 149- 151.
doi: 10.1049/el.2018.7251 |
8 | YANG Q , DENG B , WANG H Q , et al. Translation compensation and micro-Doppler extraction for precession ballistic targets with a wideband terahertz radar[J]. Journal of Electronic Imaging, 2018, 27 (1): 013009. |
9 | PARK S R , NAM I , NOH S . Modeling and simulation for the investigation of radar responses to electronic attacks in electronic warfare environments[J]. Security and Communication Networks, 2018, 1- 13. |
10 | 金光虎, 高勋章, 黎湘, 等. 基于ISAR像序列的弹道目标进动特征提取[J]. 电子学报, 2010, 28 (6): 1233- 1238. |
JIN G H , GAO X Z , LI X , et al. Precession feature extraction of ballistic targets based on dynamic ISAR image sequence[J]. Acta Electronica Sinica, 2010, 28 (6): 1233- 1238. | |
11 | 束长勇, 陈世春, 吴洪骞, 等. 基于ISAR像序列的锥体目标进动及结构参数估计[J]. 电子与信息学报, 2015, 37 (5): 1078- 1084. |
SHU C Y , CHEN S C , WU H Q , et al. Precession and structure parameters estimation of precession cone target based on ISAR image sequence[J]. Journal of Electronics&Information Technology, 2015, 37 (5): 1078- 1084. | |
12 | 徐少坤, 刘记红, 袁翔宇, 等. 基于ISAR图像的中段目标二维几何特征反演方法[J]. 电子与信息学报, 2015, 37 (2): 340- 345. |
XU S K , LIU J H , YUAN X Y , et al. Two dimensional geometric feature inversion method for midcourse target based on ISAR Image[J]. Journal of Electronics & Information Technology, 2015, 37 (2): 340- 345. | |
13 |
雷腾, 刘进忙, 李松, 等. 基于MP稀疏分解的弹道中段目标微动ISAR成像新方法[J]. 系统工程与电子技术, 2011, 33 (12): 2649- 2654.
doi: 10.3969/j.issn.1001-506X.2011.12.15 |
LEI T , LIU J M , LI S , et al. A novel ISAR imaging method of ballistic midcourse targets based on MP sparse decomposition[J]. Systems Engineering and Electronics, 2011, 33 (12): 2649- 2654.
doi: 10.3969/j.issn.1001-506X.2011.12.15 |
|
14 |
朱宇涛, 郁文贤, 粟毅. 一种基于MIMO技术的ISAR成像方法[J]. 电子学报, 2009, 37 (9): 1885- 1894.
doi: 10.3321/j.issn:0372-2112.2009.09.003 |
ZHU Y T , YU W X , SU Y . An ISAR imaging method based on MIMO technique[J]. Acta Electronica Sinica, 2009, 37 (9): 1885- 1894.
doi: 10.3321/j.issn:0372-2112.2009.09.003 |
|
15 | PASTINA D, BUCCIARELLI M, PIERFRANCESCO L. Multistatic and MIMO distributed ISAR for enhanced cross-range resolution of rotating targets[J]. IEEE Trans.on Geoscience and Remote Sensing, 2010, 48(8): 3300-3317. |
16 | 董会旭, 张永顺, 冯存前, 等. 基于线阵的MIMO-ISAR二维成像方法[J]. 电子与信息学报, 2015, 37 (2): 309- 314. |
DONG H X , ZHANG Y S , FENG C Q , et al. Two-dimensional imaging using MIMO radar and ISAR technique based on linear array[J]. Journal of Electronics & Information Technology, 2015, 37 (2): 309- 314. | |
17 | WANG Y, LI X L. 3-D Imaging based on combination of the ISAR technique and a MIMO radar system[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56(10): 1-22. |
18 | MA L , LIU J , WANG T , et al. Micro-doppler characteristics of sliding-type scatting center on rotationally symmetric target[J]. Science China Information Sciences, 2011, 41 (5): 605- 616. |
19 | ZHANG S H, LIU Y X. Bayesian bistatic ISAR imaging for targets with complex motion under low SNR condition[J]. IEEE Trans.on Image Processing, 2018, 27(5): 2447-2460. |
20 |
SHI L , GUO B F , MA J T , et al. A novel channel calibration method for bistatic ISAR imaging system[J]. Applied Sciences, 2018, 8 (11): 2160.
doi: 10.3390/app8112160 |
21 |
LI H , ZHAO Y , CHENG Z , et al. Orthogonal frequency division multiplexing linear frequency modulation signal design with optimized pulse compression property of spatial synthesized signals[J]. IET Radar, Sonar and Navigation, 2016, 10, 1319- 1326.
doi: 10.1049/iet-rsn.2015.0642 |
22 |
HASHEMPOUR H R , MOHMMAD A M S , SHEIKHI A . Cyclic prefix-based OFDM ISAR imaging[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2018, 42 (2): 239- 249.
doi: 10.1007/s40998-018-0057-5 |
23 | WANG W Q, SO H C, HUANG L T, et al.Low peak-to-average ratio OFDM chirp waveform diversity design[C]//Proc.of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2014: 8351-8354. |
24 |
KNILL C , ROOS F , SCHWEIZER B , et al. Random multiplexing for an MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29 (4): 300- 302.
doi: 10.1109/LMWC.2019.2901405 |
25 |
SUN S , LIANG G . ISAR imaging of complex motion targets based on Radon transform cubic chirplet decomposition[J]. Journal of International Journal of Remote Sensing, 2018, 39 (6): 1770- 1781.
doi: 10.1080/01431161.2017.1415485 |
26 | ZHU Y T, SU Y, YU W X. An ISAR imaging method based on MIMO technique[J]. IEEE Trans.on Geoscience and Remote Sensing, 2010, 48(8): 3290-3299. |
27 | 邵长宇, 杜兰, 韩勋, 等. 基于双视角距离像序列的空间锥体目标参数估计方法[J]. 电子与信息学报, 2015, 37 (11): 2735- 2741. |
SHAO C Y , DU L , HAN X , et al. Estimation method for space target coning target parameters based on two-aspect range profile sequences[J]. Journal of Electronics&Information Technology, 2015, 37 (11): 2735- 2741. | |
28 | BROWN L G . A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24 (4): 326- 376. |
29 | MA J, JIANG J J, ZHOU H B, et al.Guided locality preserving feature matching for remote sensing image registration[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56(8): 4435-4447. |
30 | CHEN H M, VARSHNEY P K, ARORA M K. Performance of mutual information similarity measure for registration of multitemporal remote sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2003, 41(11): 2445-2454. |
31 |
LIU F Q , BI F K , CHEN L , et al. Feature-area optimization: a novel SAR image registration method[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (2): 242- 246.
doi: 10.1109/LGRS.2015.2507982 |
32 | 谷文堃, 王党卫, 马晓岩. 分布式MIMO-ISAR子图像融合方法[J]. 雷达学报, 2017, 6 (1): 90- 97. |
GU W K , WANG D W , MA X Y . Distributed MIMO-ISAR sub-image fusion method[J]. Journal of Radars, 2017, 6 (1): 90- 97. |
[1] | SHU Shi, FANG Jiancheng, ZHANG Wei, LIU Gang, QIAN Yong, ZHANG Jian, CUI Peiling. Composite compensation method to improve the image registration based on MSCMG [J]. Systems Engineering and Electronics, 2019, 41(12): 2827-2834. |
[2] | XU Dan, FU Jixiang, SUN Guangcai, XING Mengdao, SU Tao. Accurate wide band high velocity motion compensation for ballistic targets [J]. Systems Engineering and Electronics, 2019, 41(10): 2205-2213. |
[3] | ZENG Lina, ZHOU Deyun, PAN Qian, ZHANG Kun. Optimal Euclidean distance matrix matching method for synthetic aperture radar images [J]. Systems Engineering and Electronics, 2017, 39(5): 1002-1006. |
[4] |
WANG Yanzhao, SU Juan.
SAR image registration algorithm based on speckle reducing SIFT
[J]. Systems Engineering and Electronics, 2017, 39(12): 2697-2703.
|
[5] | XUE Hai-wei, FENG Da-zheng. Analytic offset search method for InSAR image precise registration [J]. Systems Engineering and Electronics, 2016, 38(8): 1787-1793. |
[6] | HU Xiao-wei, TONG Ning-ning, HU Guo-ping, WANG Yu-chen. Multi-ballistic targets resolution based on micro-Doppler [J]. Systems Engineering and Electronics, 2015, 37(8): 1734-1740. |
[7] | LIU Yong-chun, WANG Guang-xue, LI Ping, YAN Xiao-peng. Fully affine SAR image registration method based on feature points [J]. Systems Engineering and Electronics, 2015, 37(6): 1259-1265. |
[8] | LI Zhen-hua, JIANG Geng-hong, XU Sheng-nan, LIU Yun-gang. Image registration algorithm for infrared and visible images#br# based on contour polygon fitting [J]. Systems Engineering and Electronics, 2015, 37(12): 2872-2878. |
[9] | WU Yi-quan,TAO Fei-xiang,CAO Zhao-qing. Image registration algorithm based on dual tree complex wavelet transform and SURF [J]. Systems Engineering and Electronics, 2014, 36(5): 997-1003. |
[10] | ZHANG Xiu-jie, LI Shi-yong, SHEN Yi, SONG Shen-min. Application of harmony search quantum genetic algorithm in image registration [J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2152-2156. |
[11] | LU Shan, LEI Ying-jie, KONG Wei-wei, LEI Yang. Image registration method based on key point feature and improved Hausdorff distance [J]. Journal of Systems Engineering and Electronics, 2011, 33(7): 1664-1667. |
[12] | GAO Feng, WEN Gong-jian, LU Huan-zhang. Multi-feature matching algorithm considering uncertainty of features for image registration [J]. Journal of Systems Engineering and Electronics, 2011, 33(6): 1415-1419. |
[13] | FENG Wei, HU Bo. Novel color image registration algorithm using quaternion phase-only correlation [J]. Journal of Systems Engineering and Electronics, 2010, 32(1): 183-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||