Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (2): 544-554.doi: 10.12305/j.issn.1001-506X.2025.02.21
• Systems Engineering • Previous Articles
Zhigang HU1, Jingjun LOU2, Yuedong SHI2,*, Junbo HU2
Received:
2024-01-09
Online:
2025-02-25
Published:
2025-03-18
Contact:
Yuedong SHI
CLC Number:
Zhigang HU, Jingjun LOU, Yuedong SHI, Junbo HU. Regional guarantee scheduling model research based on structured data[J]. Systems Engineering and Electronics, 2025, 47(2): 544-554.
Table 1
Information related to guarantee institutions"
保障机构 | ui | 保障单元 | xik, hik |
X1 | [30, 30] | X11 | [8, 22, 12, 11] |
X12 | [16, 18, 11, 8] | ||
X13 | [18, 13, 7, 11] | ||
X2 | [30, 30] | X21 | [58, 22, 11, 12] |
X22 | [55, 19, 11, 11] | ||
X23 | [50, 15, 8, 7] | ||
X3 | [20, 42] | X31 | [25, 8, 10, 25] |
X32 | [48, 9, 10, 17] | ||
X4 | [46, 20] | X41 | [28, 23, 25, 10] |
X42 | [39, 22, 21, 10] | ||
X5 | [34, 38] | X51 | [36, 19, 17, 21] |
X52 | [37, 18, 17, 17] |
Table 2
Information related to equipment grouping"
装备编组 | vj | 保障单元 | yjl, Hjl |
Y1 | [22, 38] | Y11 | [18, 18, 6, 10] |
Y12 | [30, 19, 5, 8] | ||
Y13 | [40, 18, 4, 9] | ||
Y14 | [50, 19, 7, 11] | ||
Y2 | [75, 25] | Y21 | [8, 26, 12, 10] |
Y22 | [18, 28, 13, 3] | ||
Y23 | [28, 27, 15, 2] | ||
Y24 | [38, 26, 11, 3] | ||
Y25 | [48, 28, 10, 2] | ||
Y26 | [58, 27, 14, 5] | ||
Y3 | [48, 34] | Y31 | [12, 22, 10, 6] |
Y32 | [22, 21, 8, 5] | ||
Y33 | [35, 21, 9, 4] | ||
Y34 | [44, 22, 11, 7] | ||
Y35 | [55, 22, 10, 12] | ||
Y4 | [15, 63] | Y41 | [26, 13, 3, 13] |
Y42 | [38, 13, 2, 15] | ||
Y43 | [48, 13, 3, 11] | ||
Y44 | [32, 8, 2, 10] | ||
Y45 | [45, 8, 5, 14] |
Table 4
Supply and demand distribution of resources A and B"
名称 | 供应分布 | 需求分布 |
资源A | normrnd(38, 2, 5, 1) | normrnd(30, 2, 1, 4) |
normrnd(40, 2, 5, 1) | exprnd(40, [1, 4]) | |
normrnd(50, 2, 5, 1) | unifrnd(30, 40, 1, 4) | |
资源B | normrnd(40, 2, 5, 1) | normrnd(33, 2, 1, 4) |
normrnd(38, 2, 5, 1) | exprnd(38, [1, 4]) | |
normrnd(52, 2, 5, 1) | unifrnd(33, 40, 1, 4) |
Table 5
Calculation data of guarantee scheme error under two conditions"
条件 | 类型 | A | B | 类型 | A | B | ||
中规模 | normmd(38, 2, 50, 1) normmd(30, 2, 1, 40) | X11 | 0.993 4 | 0.044 9 | X21 | 0.992 4 | 0.048 9 | |
normmd(40, 2, 50, 1) expmd(40, [1, 40]) | 0.995 4 | 0.048 9 | 0.993 7 | 0.081 3 | ||||
normmd(50, 2, 50, 1) unifmd(30, 40, 1, 40) | 0.992 6 | 0.064 7 | 0.993 0 | 0.068 5 | ||||
normmd(38, 2, 50, 1) normmd(30, 2, 1, 40) | X12 | 0.992 6 | 0.047 0 | X22 | 0.992 5 | 0.050 0 | ||
normmd(40, 2, 50, 1) expmd(40, [1, 40]) | 0.993 7 | 0.069 2 | 0.990 6 | 0.124 7 | ||||
normmd(50, 2, 50, 1) unifmd(30, 40, 1, 40) | 0.993 6 | 0.056 9 | 0.992 5 | 0.068 9 | ||||
小规模 | normmd(38, 2, 50, 1) normmd(30, 2, 1, 40) | Y11 | 0.885 2 | 39.363 2 | Y21 | 0.619 2 | 133.531 5 | |
normmd(40, 2, 50, 1) expmd(40, [1, 40]) | 0.989 8 | 3.399 8 | 0.988 7 | 3.800 9 | ||||
normmd(50, 2, 50, 1) unifmd(30, 40, 1, 40) | 0.595 6 | 141.504 7 | 0.659 9 | 116.608 9 | ||||
normmd(38, 2, 50, 1) normmd(30, 2, 1, 40) | Y12 | 0.965 4 | 11.461 0 | Y22 | 0.958 4 | 13.805 3 | ||
normmd(40, 2, 50, 1) expmd(40, [1, 40]) | 0.988 0 | 4.052 8 | 0.988 4 | 3.808 7 | ||||
normmd(50, 2, 50, 1) unifmd(30, 40, 1, 40) | 0.865 1 | 54.091 9 | 0.849 5 | 52.613 0 |
1 | 胡志刚, 楼京俊, 史跃东. 资源分布视角下区域保障调度模型研究[J]. 系统工程与电子技术, 2024, 46 (9): 3093- 3102. |
HU Z G , LOU J J , SHI Y D . Research on regional guarantee schedu-ling model from the perspective of resource distribution[J]. Systems Engineering and Electronics, 2024, 46 (9): 3093- 3102. | |
2 | 齐小刚, 王亚洲, 班利明, 等. 求解动态维修资源优化调度的多目标进化算法[J]. 智能系统学报, 2023, 18 (2): 305- 313. |
QI X G , WANG Y Z , BAN L M , et al. Multi-objective evolutionary algorithm for optimal scheduling of dynamic maintenance resources[J]. CAAI Transactions on Intelligent Systems, 2023, 18 (2): 305- 313. | |
3 | 李飞飞, 徐哲, 刘东宁, 等. 分布式资源受限多项目调度问题研究综述[J]. 工业工程与管理, 2023, 28 (5): 199- 210. |
LI F F , XU Z , LIU D N , et al. A literature review of distributed resource-constrained multi-project scheduling problem[J]. Industrial Engineering and Management, 2023, 28 (5): 199- 210. | |
4 | 王琮, 沈会良, 夏永祥, 等. 装备保障体系关键节点分析[J]. 系统工程与电子技术, 2022, 44 (10): 3134- 3142. |
WANG C , SHEN H L , XIA Y X , et al. Analysis of critical nodes in equipment support system[J]. Systems Engineering and Electronics, 2022, 44 (10): 3134- 3142. | |
5 | 徐耀耀, 吕亚娜, 邱少明, 等. 基于属性匹配的装备保障体系建模方法研究[J]. 火力与指挥控制, 2021, 46 (1): 44- 49. |
XU Y Y , LYU Y N , QIU S M , et al. Research on modeling method of equipment support system based on attribute matching[J]. Fire Control & Command Control, 2021, 46 (1): 44- 49. | |
6 | DAN J , JIN T , CHI H , et al. Homda: high-order moment-based domain alignment for unsupervised domain adaptation[J]. Knowledge-Based Systems, 2023, 261 (12): 110205. |
7 | GU X , YANG Y C , ZENG W , et al. Keypoint-guided optimal transport with applications in heterogeneous domain adaptation[J]. Advances in Neural Information Processing Systems, 2022, 35 (3): 14972- 14985. |
8 | XU R J, LIU P L, ZHANG Y, et al. Joint partial optimal transport for open set domain adaptation[C]//Proc. of the 29th International Joint Conference on Artificial Intelligence, 2021: 2540-2546. |
9 | CHANG W X , SHI Y , TUAN H , et al. Unified optimal transport framework for universal domain adaptation[J]. Advances in Neural Information Processing Systems, 2022, 35 (10): 29512- 29524. |
10 | HUANG P D , XU M D , ZHU J C , et al. Curriculum reinforcement learning using optimal transport via gradual domain adaptation[J]. Advances in Neural Information Processing Systems, 2022, 35 (10): 10656- 10670. |
11 | NGUYEN T, LE T, ZHAO H, et al. Most: multi-source domain adaptation via optimal transport for student-teacher learning[C]//Proc. of the Uncertainty in Artificial Intelligence, 2021: 225-235. |
12 | 徐宗本. 人工智能的10个重大数理基础问题[J]. 中国科学: 信息科学, 2021, 51 (12): 1967- 1978. |
XU Z B . Ten fundamental problems for artificial intelligence: mathematical and physical aspects[J]. SCIENTIA SINICA Informationis, 2021, 51 (12): 1967- 1978. | |
13 | BAKIR G , HOFMANN T , SCHOLKOPF B , et al. Predicting structured data (neural information processing)[M]. Massachusetts: The MIT Press Cambridge, 2007. |
14 | BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[EB/OL]. [2024-01-09]. http://arxiv.org/pdf/1806.01261.pdf. |
15 | TITOUAN V, LAETITIA C, REMI F, et al. Optimal transport for structured data with application on graphs[EB/OL]. [2024-01-09]. https://doi.org/10.48550/arXiv.1805.09114. |
16 | WANG Y C , WU M , LI X L , et al. Multivariate time-series representation learning via hierarchical correlation pooling boosted graph neural network[J]. on Artificial Intelligence, 2024, 5 (1): 321- 333. |
17 | JIN M , HUAN Y K , WEN Q S , et al. A survey on graph neural networks for time series: forecasting, classification, imputation, and anomaly detection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2024, 46 (2): 10466- 10485. |
18 |
LI J Y , MA S S , LE T D , et al. Causal decision trees[J]. IEEE Trans.on Knowledge and Data Engineering, 2017, 29 (2): 257- 271.
doi: 10.1109/TKDE.2016.2619350 |
19 | MANTAS C J , CASTELLANO J G , SERAFIN M G , et al. A comparison of random forest based algorithms: random credal random forest versus oblique random forest[J]. Soft Computing, 2019, 23 (5): 10739- 10754. |
20 |
WU Z H , PAN S R , CHEN F W , et al. A comprehensive survey on graph neural networks[J]. IEEE Trans.on Neural Networks and Learning Systems, 2021, 32 (1): 4- 24.
doi: 10.1109/TNNLS.2020.2978386 |
21 | WU S W , SUN F , ZHANG W T , et al. Graph neural networks in recommender systems: a survey[J]. ACM Computing Surveys, 2023, 55 (5): 97. |
22 | XU B B, SHEN H W, CAO Q, et al. Graph wavelet neural network[C]//Proc. of the 7th International Conference on Learning Representations, 2019. |
23 | PEYRE G, CUTURI M, SOLOMON J. Gromov-Wasserstein averaging of Kernel and distance matrices[C]//Proc. of the 33rd International Conference on Machine Learning, 2016. |
24 | ALVAREZ M D, JAAKKOLA T S, JEGELKA S. Structured optimal transport[EB/OL]. [2024-01-09]. http://arxiv.org/pdf/1712.06199.pdf. |
25 |
COURTY N , FLAMARY R , TUIA D , et al. An optimal transport for domain adaptation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (9): 1853- 1865.
doi: 10.1109/TPAMI.2016.2615921 |
26 | WANG X M , WANG S T , HUANG Z X , et al. Structure regu-larized sparse coding for data representation[J]. Knowledge-Based Systems, 2019, 174, 87- 102. |
27 | WANG Y , SONG X , CHEN K , et al. A novel singular value decomposition-based similarity measure method for non-local means denoising[J]. Signal, Image and Video Processing, 2022, 16 (9): 403- 410. |
28 | KHAN G A , HU J , LI T R , et al. Multi-view data clustering via non-negative matrix factorization with manifold regularization[J]. International Journal of Machine Learning and Cybernetics, 2022, 13 (3): 677- 689. |
29 | THORPE M , PARK S , KOLOURI S , et al. A transportation LP distance for signal analysis[J]. Journal of Mathematical Imaging and Vision, 2017, 59 (2): 187- 210. |
30 | NIKOLENTZOS G, MELADIANOS P, VAZIRGIANNIS M. Matching node embeddings for graph similarity[C]//Proc. of the 31th AAAI Conference on Artificial Intelligence, 2017. |
31 | REDKO I, VAYER T V, FLAMARY R, et al. CO-optimal transport[EB/OL]. [2024-01-09]. https://doi.org/10.48550/arXiv.2002.03731. |
[1] | Zhigang HU, Jingjun LOU, Yuedong SHI. Research on regional guarantee scheduling model from the perspective of resource distribution [J]. Systems Engineering and Electronics, 2024, 46(9): 3093-3102. |
[2] | Cong WANG, Huiliang SHEN, Yongxiang XIA, Guanghan BAI, Yining FANG. Analysis of critical nodes in equipment support system [J]. Systems Engineering and Electronics, 2022, 44(10): 3134-3142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||