Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (1): 173-181.doi: 10.12305/j.issn.1001-506X.2025.01.18
• Systems Engineering • Previous Articles Next Articles
Qin LEI, Yanbing GAO, Yufeng ZHOU, Zhibin WU
Received:
2023-12-21
Online:
2025-01-21
Published:
2025-01-25
Contact:
Zhibin WU
CLC Number:
Qin LEI, Yanbing GAO, Yufeng ZHOU, Zhibin WU. Multi-delivery option path planning based on improved ALNS algorithm[J]. Systems Engineering and Electronics, 2025, 47(1): 173-181.
Table 1
Model parameters and variables"
符号 | 含义 |
N | 所有客户集合 |
Oc | 客户c的所有交付选项 |
L | 地点集合 |
F | 充电站集合 |
V | 所有节点集 |
E | 所有节点所形成的弧集 |
K | 所有可用车辆集合 |
P | 客户偏好等级数目 |
βp | 所有客户中以优先级不超过p的选项完成配送的客户比例 |
dij | 两节点之间的距离 |
tij | 两节点之间的行驶时间 |
si | 交付选项i的服务时间 |
ei | 交付选项i的最早开始服务时间 |
li | 交付选项i的最晚开始服务时间 |
qo | 客户在选项o处的需求量 |
po | 选项o对应的偏好水平 |
C | 车辆最大载荷量 |
Q | 车辆电池容量 |
cr | 充电成本 |
cv | 车辆固定成本 |
ct | 时间惩罚系数 |
cpt | 地点偏好惩罚系数 |
g | 充电速率 |
r | 车辆电池消耗速率 |
yo | 表示交付选项o是否会被选择 |
rfk | 表示车辆k在充电站f的充电量 |
vik | 表示车辆k在离开节点i的剩余电量 |
hik | 表示车辆k在节点i的开始服务时间 |
xijk | 表示车辆k是否经过弧(i, j) |
Table 3
Comparision results for small scale instance"
n | Gurobi | ALNS-TS | |||||
TC | Gap/% | t/s | TC | t/s | Δ/% | ||
5 | 270.11 | 0 | 11 | 270.11 | 0 | 0 | |
6 | 272.5 | 0 | 193 | 272.5 | 1 | 0 | |
7 | 272.5 | 0 | 717 | 272.5 | 1 | 0 | |
8 | 279.41 | 54.5 | 7 200 | 279.41 | 1 | 0 | |
9 | 328.25 | 52.7 | 7 200 | 328.25 | 1 | 0 | |
10 | 534.09 | 75 | 7 200 | 534.09 | 1 | 0 | |
11 | 534.68 | 74.3 | 7 200 | 532.66 | 1 | -0.38 | |
12 | 540.34 | 77.6 | 7 200 | 534.83 | 1 | -1.02 |
Table 4
Results for ALNS-TS solving VRPTW instances"
算例 | 已知最优解 | ALNS-TS | ||||
NV | TD | NV | TD | 时间/s | ||
C101 | 10 | 829 | 10 | 829 | 22 | |
C104 | 10 | 825 | 10 | 825 | 65 | |
C201 | 3 | 592 | 3 | 592 | 25 | |
C204 | 3 | 591 | 3 | 591 | 37 | |
R101 | 19 | 1 651 | 19 | 1 654 | 62 | |
R104 | 9 | 1 007 | 11 | 1 003 | 50 | |
R201 | 4 | 1 252 | 6 | 1 212 | 63 | |
R204 | 2 | 826 | 4 | 742 | 75 | |
RC101 | 14 | 1 697 | 16 | 1 673 | 28 | |
RC108 | 10 | 1 140 | 11 | 1 148 | 45 | |
RC201 | 4 | 1 407 | 5 | 1 364 | 55 | |
RC208 | 3 | 828 | 4 | 861 | 48 |
Table 5
Results comparision for different algorithms"
算例 | ALNS-TS | LNS-SPP | HGA | |||||
NV | TD | NV | TD | NV | TD | |||
C1 | 10 | 828.45 | 10 | 828.38 | 10 | 843.6 | ||
C2 | 3.1 | 589.88 | 3.3 | 616.81 | 3 | 594.96 | ||
R1 | 13.9 | 1 207.81 | 12 | 1 211.83 | 11.9 | 1 242 | ||
R2 | 4 | 921.84 | 2.75 | 965.73 | 2.7 | 958.23 | ||
RC1 | 13.3 | 1 380.99 | 11.53 | 1 384.83 | 11.5 | 1 384.17 | ||
RC2 | 4.9 | 1 050.55 | 3.25 | 1 141.36 | 3.3 | 1 119.23 |
Table 6
Results comparison for EVRPDO instance"
算例 | 交付选项的数量 | Gurobi | ALNS-TS | |||||
TC | Gap/% | t/s | TC | t/s | Δ/% | |||
U_25large_1 | 50 | 991.25 | 74.75 | 7 200 | 956.94 | 8.98 | -3.46 | |
U_25large_5 | 50 | 914.17 | 83.31 | 7 200 | 874.22 | 8.52 | -4.37 | |
U_25medium_2 | 50 | 1 144.88 | 84.21 | 7 200 | 886.7 | 7.75 | -22.55 | |
U_25medium_7 | 50 | 815.06 | 79.64 | 7 200 | 805.74 | 7.96 | -1.14 | |
U_25small_3 | 50 | 1 155.40 | 78.51 | 7 200 | 920.22 | 7.20 | -20.36 | |
U_25small_6 | 50 | 869.94 | 79.60 | 7 200 | 826.82 | 7.33 | -4.96 | |
U_50large_2 | 100 | 2 649.80 | 90.64 | 7 200 | 1 963.81 | 48.58 | -25.89 | |
U_50large_8 | 100 | 3 011.46 | 91.62 | 7 200 | 1 890.5 | 51.82 | -37.22 | |
U_50medium_1 | 100 | 2 191.47 | 87.68 | 7 200 | 1 816.27 | 46.86 | -17.12 | |
U_50medium_6 | 100 | 2 280.68 | 89.66 | 7 200 | 1 892.04 | 44.04 | -17.04 | |
U_50small_2 | 100 | 1 756.97 | 86.54 | 7 200 | 1 717.16 | 30.88 | -2.27 | |
U_50small_8 | 100 | 2 381.76 | 89.05 | 7 200 | 1 776.86 | 31.22 | -25.40 | |
V_25large_2 | 38 | 1 097.95 | 80.54 | 7 200 | 996.84 | 5.39 | -9.21 | |
V_25large_6 | 38 | 1 326.16 | 85.28 | 7 200 | 1 035.22 | 4.63 | -21.94 | |
V_25medium_10 | 38 | 1 103.72 | 78.71 | 7 200 | 1 019.83 | 8.66 | -7.60 | |
V_25medium_9 | 38 | 1 106.36 | 83.89 | 7 200 | 870.96 | 4.95 | -21.28 | |
V_25small_10 | 38 | 995.95 | 61.50 | 7 200 | 967.39 | 7.36 | -2.87 | |
V_25small_4 | 38 | 934.13 | 73.91 | 7 200 | 901.1 | 4.17 | -3.54 | |
V_50large_10 | 76 | 2 513.05 | 86.98 | 7 200 | 1 992.4 | 28.53 | -20.72 | |
V_50large_2 | 76 | 2 369.52 | 88.42 | 7 200 | 2 023.2 | 18.54 | -14.62 | |
V_50medium_3 | 76 | 1 964.08 | 86.52 | 7 200 | 1 487.74 | 18.00 | -24.25 | |
V_50medium_6 | 76 | 2 171.31 | 87.22 | 7 200 | 1 622.29 | 28.26 | -25.29 | |
V_50small_2 | 76 | 1 824.64 | 84.48 | 7 200 | 1 779 | 24.35 | -2.50 | |
V_50small_7 | 76 | 1 888.75 | 83.55 | 7 200 | 1 572.32 | 16.56 | -16.75 |
1 |
WASSMUTH K , KOEHLER C , AGATZ N , et al. Demand management for attended home delivery-a literature review[J]. European Journal of Operational Research, 2023, 311 (3): 801- 815.
doi: 10.1016/j.ejor.2023.01.056 |
2 |
FLECKENSTEIN D , KLEIN R , STEIN-HARDT C . Recent advances in integrating demand management and vehicle routing: a methodological review[J]. European Journal of Operational Research, 2023, 306 (2): 499- 518.
doi: 10.1016/j.ejor.2022.04.032 |
3 |
LIIMATAINEN H , VAN V O , APLYN D . The potential of electric trucks-an international commodity-level analysis[J]. Applied Energy, 2019, 236, 804- 814.
doi: 10.1016/j.apenergy.2018.12.017 |
4 | OU S, LIN Z H, WU Z X, et al. A study of China's explosive growth in the plug-in electric vehicle market[R]. Tennessess: The Oak Ridge National Laboratory, 2017. |
5 |
刘瑶, 夏阳升, 石建迈, 等. 车载多无人机协同多区域覆盖路径规划方法[J]. 系统工程与电子技术, 2023, 45 (5): 1380- 1390.
doi: 10.12305/j.issn.1001-506X.2023.05.14 |
LIU Y , XIA Y S , SHI J M , et al. Path planning method for multi-area coverage by cooperated ground vehicle multi-drone[J]. Systems Engineering and Electronics, 2023, 45 (5): 1380- 1390.
doi: 10.12305/j.issn.1001-506X.2023.05.14 |
|
6 |
李翰, 张洪海, 张连东, 等. 城市区域多物流无人机协同任务分配[J]. 系统工程与电子技术, 2021, 43 (12): 3594- 3602.
doi: 10.12305/j.issn.1001-506X.2021.12.22 |
LI H , ZHANG H H , ZHANG L D , et al. Multiple logistics unmanned aerial vehicle collaborative task allocation in urban areas[J]. Systems Engineering and Electronics, 2021, 43 (12): 3594- 3602.
doi: 10.12305/j.issn.1001-506X.2021.12.22 |
|
7 |
SCHNEIDER M , STENGER A , GOEKE D . The electric vehicle-routing problem with time windows and recharging stations[J]. Transportation Science, 2014, 48 (4): 500- 520.
doi: 10.1287/trsc.2013.0490 |
8 |
KESKIN M , CATAY B . Partial recharge strategies for the electric vehicle routing problem with time windows[J]. Transportation Research Part C: Emerging Technologies, 2016, 65, 111- 127.
doi: 10.1016/j.trc.2016.01.013 |
9 |
RAEESI R , ZOGRAFOS K G . The electric vehicle routing problem with time windows and synchronized mobile battery swapping[J]. Transportation Research Part B: Methodological, 2020, 140, 101- 129.
doi: 10.1016/j.trb.2020.06.012 |
10 |
HIERMANN G , PUCHINGER J , ROPKE S , et al. The electric fleet size and mix vehicle routing problem with time windows and recharging stations[J]. European Journal of Operational Research, 2016, 252 (3): 995- 1018.
doi: 10.1016/j.ejor.2016.01.038 |
11 |
MONTOYA A , GUERET C , MENDOZA J E , et al. The electric vehicle routing problem with nonlinear charging function[J]. Transportation Research Part B: Methodological, 2017, 103, 87- 110.
doi: 10.1016/j.trb.2017.02.004 |
12 |
SHEN Y D , PENG L W , LI J P . An improved estimation of distribution algorithm for multi-compartment electric vehicle routing problem[J]. Journal of Systems Engineering and Elec-tronics, 2021, 32 (2): 365- 379.
doi: 10.23919/JSEE.2021.000030 |
13 | 黄志红, 黄卫来, 郭放. 考虑电池损耗的电动汽车充电设施选址与充电策略协同优化研究[J]. 中国管理科学, 2024, 32 (6): 68- 78. |
HUANG Z H , HUANG W L , GUO F . Collaborative optimization of charging network and charging strategy with practical battery wear model[J]. Chinese Journal of Management Science, 2024, 32 (6): 68- 78. | |
14 |
REYES D , SAVELSBERGH M , TORIELLO A . Vehicle routing with roaming delivery locations[J]. Transportation Research Part C: Emerging Technologies, 2017, 80, 71- 91.
doi: 10.1016/j.trc.2017.04.003 |
15 |
OZBAYGIN G , KARASAN O E , SAVELSB-ERGH M , et al. A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[J]. Transportation Research Part B: Methodological, 2017, 100, 115- 137.
doi: 10.1016/j.trb.2017.02.003 |
16 |
LOMBARD A , TAMAYO-GIRALDO S , FONTANE F . Vehicle routing problem with roaming delivery locations and stochastic travel times (VRPRDL-S)[J]. Transportation Research Procedia, 2018, 30, 167- 177.
doi: 10.1016/j.trpro.2018.09.019 |
17 |
DENG Y , ZHU W H , LI H W , et al. Multi-type ant system algorithm for the time dependent vehicle routing problem with time windows[J]. Journal of Systems Engineering and Electro-nics, 2018, 29 (3): 625- 638.
doi: 10.21629/JSEE.2018.03.20 |
18 |
CHEN M C , YERASANI S , TIWARI M K . Solving a 3-dimensional vehicle routing problem with delivery options in city logistics using fast-neighborhood based crowding differential evolution algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (8): 10389- 10402.
doi: 10.1007/s12652-022-03696-1 |
19 |
FREY C M M , JUNGWIRTH A , FREY M , et al. The vehicle routing problem with time windows and flexible delivery locations[J]. European Journal of Operational Research, 2023, 308 (3): 1142- 1159.
doi: 10.1016/j.ejor.2022.11.029 |
20 |
SADATI M E H , AKBARI V , CATAY B . Electric vehicle routing problem with flexible deliveries[J]. International Journal of Production Research, 2022, 60 (13): 4268- 4294.
doi: 10.1080/00207543.2022.2032451 |
21 |
ZHOU S Q , ZHANG D Z , JI B , et al. Two-echelon vehicle routing problem with direct deliveries and access time windows[J]. Expert Systems with Applications, 2024, 244, 121150.
doi: 10.1016/j.eswa.2023.121150 |
22 | ENTHOVEN D L J U , JARGALSAIKHAN B , ROODBERGEN K J , et al. The two-echelon vehicle routing problem with covering options: city logistics with cargo bikes and parcel lockers[J]. Computers & Operations Research, 2020, 118, 104919. |
23 |
ZHOU L , BALDACCI R , VIGO D , et al. A multi-depot two-echelon vehicle routing problem with delivery options arising in the last mile distribution[J]. European Journal of Operational Research, 2018, 265 (2): 765- 778.
doi: 10.1016/j.ejor.2017.08.011 |
24 |
TILK C , OLKIS K , IRNICH S . The last-mile vehicle routing problem with delivery options[J]. OR Spectrum, 2021, 43 (4): 877- 904.
doi: 10.1007/s00291-021-00633-0 |
25 |
DUMEZ D , LEHUEDE F , PETON O . A large neighborhood search approach to the vehicle routing problem with delivery options[J]. Transportation Research Part B: Methodological, 2021, 144, 103- 132.
doi: 10.1016/j.trb.2020.11.012 |
26 |
VOIGT S , FRANK M , FONTAINE P , et al. The vehicle routing problem with availability profiles[J]. Transportation Science, 2023, 57 (2): 531- 551.
doi: 10.1287/trsc.2022.1182 |
27 |
KARELS V C G , REI W , VEELENTURF L P , et al. A vehicle routing problem with multiple service agreements[J]. European Journal of Operational Research, 2024, 313 (1): 129- 145.
doi: 10.1016/j.ejor.2023.07.029 |
28 | 周鲜成, 周开军, 王莉, 等. 物流配送中的绿色车辆路径模型与求解算法研究综述[J]. 系统工程理论与实践, 2021, 41 (1): 213- 230. |
ZHOU X C , ZHOU K J , WANG L , et al. Review of green vehicle routing model and its algorithm in logistics distribution[J]. Systems Engineering-Theory & Practices, 2021, 41 (1): 213- 230. | |
29 |
ZHANG H F , GE H W , YANG J L , et al. Review of vehicle routing problems: models, classifycation and solving algorithms[J]. Archives of Computational Methods in Engineering, 2022, 29, 195- 221.
doi: 10.1007/s11831-021-09574-x |
30 | GENDREAU M , POTVIN J Y . Handbook of metaheuristics[M]. Cham: Springer, 2019. |
31 |
SOLOMON M M , DESROSIERS J . Time window constrained routing and scheduling problems[J]. Transportation Science, 1988, 22 (1): 1- 13.
doi: 10.1287/trsc.22.1.1 |
32 | 仪孝展. 基于改进遗传算法的物流车辆路径规划方法研究与应用[D]. 西安: 西安理工大学, 2018. |
YI X Z. Research and application of logistics vehicle routing planning based on improved genetic algorithm[D]. Xi'an: Xi'an University of Technology, 2018. |
[1] | CHEN Jie, YI Ben-shun. Centralized optimized TDMA scheduling scheme for wireless sensor networks [J]. Journal of Systems Engineering and Electronics, 2010, 32(1): 200-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||