Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (1): 153-163.doi: 10.12305/j.issn.1001-506X.2025.01.16
• Systems Engineering • Previous Articles Next Articles
Dahao CHEN1,2, Zhijun CHENG1,*, Jian ZHONG1, Zhengqiang PAN1
Received:
2022-12-13
Online:
2025-01-21
Published:
2025-01-25
Contact:
Zhijun CHENG
CLC Number:
Dahao CHEN, Zhijun CHENG, Jian ZHONG, Zhengqiang PAN. Penalized blind Kriging model with mix quantitative and qualitative factors[J]. Systems Engineering and Electronics, 2025, 47(1): 153-163.
Table 2
Performance metrics of linear and non-linear segmentation functions under five models with different numbers of training samples"
样本数 | 指标 | 线性分段函数f1(x) | ||||
OK | UK1 | UK2 | PBK1 | PBK2 | ||
90 | RRMSE | 0.109 76 | 0.045 89 | 0.042 21 | 0.029 85 | 0.026 43 |
NRMSE | 0.021 68 | 0.009 06 | 0.008 34 | 0.005 90 | 0.005 22 | |
RMSPE | 0.000 15 | 0.000 06 | 0.000 05 | 0.000 04 | 0.000 04 | |
150 | RRMSE | 0.063 31 | 0.028 42 | 0.025 60 | 0.013 69 | 0.012 24 |
NRMSE | 0.012 52 | 0.005 63 | 0.005 07 | 0.002 71 | 0.002 42 | |
RMSPE | 0.000 09 | 0.000 04 | 0.000 03 | 0.000 02 | 0.000 02 | |
210 | RRMSE | 0.040 52 | 0.018 21 | 0.016 13 | 0.010 99 | 0.010 28 |
NRMSE | 0.007 96 | 0.003 57 | 0.003 16 | 0.002 16 | 0.002 02 | |
RMSPE | 0.000 06 | 0.000 02 | 0.000 02 | 0.000 01 | 0.000 01 | |
样本数 | 指标 | 非线性分段函数f2(x) | ||||
OK | UK1 | UK2 | PBK1 | PBK2 | ||
90 | RRMSE | 0.087 47 | 0.077 61 | 0.062 69 | 0.045 21 | 0.040 72 |
NRMSE | 0.020 20 | 0.017 94 | 0.014 50 | 0.010 46 | 0.009 42 | |
RMSPE | 0.000 86 | 0.000 64 | 0.000 71 | 0.000 39 | 0.000 42 | |
150 | RRMSE | 0.050 01 | 0.043 55 | 0.034 53 | 0.024 94 | 0.021 83 |
NRMSE | 0.011 64 | 0.010 13 | 0.008 04 | 0.005 80 | 0.005 08 | |
RMSPE | 0.000 36 | 0.000 28 | 0.000 30 | 0.000 16 | 0.000 18 | |
210 | RRMSE | 0.032 84 | 0.029 56 | 0.023 65 | 0.016 18 | 0.014 93 |
NRMSE | 0.007 60 | 0.006 84 | 0.005 47 | 0.003 74 | 0.003 45 | |
RMSPE | 0.000 25 | 0.000 19 | 0.000 20 | 0.000 11 | 0.000 13 |
Table 3
Regression coefficient of mean function of five different Kriging models in case of linear piecewise function"
模型 | 1 | x1 | x2 | x3 | x4 | x5 | x12 | x1x2 | x1x3 | x1x4 | x1x5 |
OK | 0.104 | - | - | - | - | - | - | - | - | - | - |
UK1 | 0.024 | 0.669 | 0.347 | 0.357 | 0.623 | -0.030 | - | - | - | - | - |
UK2 | -0.027 | 0.653 | 0.352 | 0.369 | 0.626 | -0.005 | 0.017 | -0.001 | 0.006 | -0.009 | -0.088 |
PBK1 | 0 | 0.654 | 0.310 | 0.339 | 0.562 | 0 | - | - | - | - | - |
PBK2 | 0 | 0.647 | 0.314 | 0.345 | 0.578 | 0 | 0.010 | 0.002 | 0 | 0 | -0.064 |
模型 | x22 | x2x3 | x2x4 | x2x5 | x32 | x3x4 | x3x5 | x42 | x4x5 | x52 | - |
OK | - | - | - | - | - | - | - | - | - | - | - |
UK1 | - | - | - | - | - | - | - | - | - | - | - |
UK2 | 0.010 | 0.003 | -0.004 | 0.117 | 0.002 | 0.008 | 0.132 | 0.000 | -0.158 | -0.020 | - |
PBK1 | - | - | - | - | - | - | - | - | - | - | - |
PBK2 | 0 | 0.004 | 0 | 0.085 | -0.004 | 0.006 | 0.113 | 0 | -0.126 | 0 | - |
Table 4
Regression coefficients of mean functions of five different Kriging models in the case of nonlinear piecewise functions"
模型 | 1 | x1 | x2 | x3 | x4 | x5 | x12 | x1x2 | x1x3 | x1x4 | x1x5 |
OK | 0.074 | - | - | - | - | - | - | - | - | - | - |
UK1 | 0.111 | 0.166 | 0.155 | 0.274 | 0.052 | -0.134 | - | - | - | - | - |
UK2 | 1.159 | 0.194 | 0.165 | 0.252 | 0.082 | -0.139 | -0.005 | 0.054 | 0.017 | 0.008 | -0.070 |
PBK1 | 0 | 0.145 | 0.112 | 0.259 | 0.034 | -0.086 | - | - | - | - | - |
PBK2 | 0 | 0.139 | 0.102 | 0.220 | 0.036 | 0 | 0 | 0.045 | 0.008 | 0 | -0.016 |
模型 | x22 | x2x3 | x2x4 | x2x5 | x32 | x3x4 | x3x5 | x42 | x4x5 | x52 | - |
OK | - | - | - | - | - | - | - | - | - | - | - |
UK1 | - | - | - | - | - | - | - | - | - | - | - |
UK2 | 0.050 | 0.060 | 0.016 | -0.052 | -0.027 | 0.057 | -0.065 | 0.050 | -0.064 | -1.236 | - |
PBK1 | - | - | - | - | - | - | - | - | - | - | - |
PBK2 | 0.055 | 0.043 | 0.010 | -0.016 | -0.002 | 0.052 | -0.015 | 0.060 | -0.016 | -0.429 | - |
1 | 周成宁, 张培培, 张冕, 等. 一种Kriging模型和改进子集模拟的多响应系统可靠性分析方法研究[J]. 机械科学与技术, 2020, 39 (2): 309- 314. |
ZHOU C N , ZHANG P P , ZHANG M , et al. Analyzing structural reliability of multi-response system based on Kriging model and gene-ralized subset simulation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39 (2): 309- 314. | |
2 |
刘佳, 杨克巍, 姜江, 等. 基于多保真度代理模型的装备系统参数估计方法[J]. 系统工程与电子技术, 2021, 43 (1): 130- 137.
doi: 10.3969/j.issn.1001-506X.2021.01.16 |
LIU J , YANG K W , JIANG J , et al. Parameter estimation method of equipment system based on multi-fidelity surrogate model[J]. Systems Engineering and Electronics, 2021, 43 (1): 130- 137.
doi: 10.3969/j.issn.1001-506X.2021.01.16 |
|
3 |
张路路, 陈思雅, 金光. 航天器抗辐射等效试验评估建模[J]. 系统工程与电子技术, 2021, 43 (9): 2673- 2677.
doi: 10.12305/j.issn.1001-506X.2021.09.38 |
ZHANG L L , CHEN S Y , JIN G . Evaluation modeling of spacecraft radiation resistance equivalent test[J]. Systems Engineering and Electronics, 2021, 43 (9): 2673- 2677.
doi: 10.12305/j.issn.1001-506X.2021.09.38 |
|
4 |
CHEN S S , ZHEN J , YANG S X , et al. Nonhierarchical multi-model fusion using spatial random processes[J]. International Journal for Numerical Methods in Engineering, 2016, 106 (7): 503- 526.
doi: 10.1002/nme.5123 |
5 |
YANTO , APRIYONO A , SANTOSO P B , et al. Landslide susceptible areas identification using IDW and ordinary Kriging interpolation techniques from hard soil depth at middle western central Java, Indonesia[J]. Natural Hazards (Dordrecht), 2022, 110 (2): 1405- 1416.
doi: 10.1007/s11069-021-04982-5 |
6 |
QIN F Y , GUO C P , LIU D J , et al. A comparison of ordinary Kriging, regression Kriging and REML-EBLUP for mapping soil organic matter on a regional scale[J]. Arabian Journal of Geosciences, 2022, 15 (12): 1120.
doi: 10.1007/s12517-022-10008-6 |
7 |
MUKESH R , SOMA P , KARTHIKEYAN V , et al. Ordinary Kriging-and coKriging-based surrogate model for ionospheric TEC prediction using NavIC/GPS data[J]. Acta Geophysica, 2020, 68 (5): 1529- 1547.
doi: 10.1007/s11600-020-00473-6 |
8 | MUKESH R V , SOMA P , KARTHIKEYAN V , et al. Prediction of ionospheric vertical total electron content from GPS data using ordinary kriging-based surrogate model[J]. Astrophysics & Space Science, 2019, 364 (15): 1- 12. |
9 |
PARDO L E , DOWD P A . The second-order stationary universal Kriging model revisited[J]. Mathematical Geology, 1998, 30 (4): 347- 378.
doi: 10.1023/A:1021740123100 |
10 |
SALAMON S J , HANSEN H J , ABBOTT D . Universal Kriging prediction of line-of-sight microwave fading[J]. IEEE Access, 2020, 8, 74743- 74758.
doi: 10.1109/ACCESS.2020.2987618 |
11 |
METHA B , TRENTI M , CHU T , et al. A geostatistical ana-lysis of multiscale metallicity variations in galaxies-Ⅱ. predicting the metallicities of H ii and diffuse ionized gas regions via universal Kriging[J]. Monthly Notices of the Royal Astronomical Society, 2022, 514 (3): 4465- 4488.
doi: 10.1093/mnras/stac1484 |
12 |
JOSEPH V R , HUNG Y , SUDJIANTO A . Blind Kriging: a new method for developing metamodels[J]. Journal of Mechanical Design, 2008, 130 (3): 31102- 31109.
doi: 10.1115/1.2829873 |
13 |
HUNG Y . Penalized blind Kriging in computer experiments[J]. Statistica Sinica, 2011, 21 (3): 1171- 1190.
doi: 10.5705/ss.2009.226 |
14 | 李涵. 计算机试验下的Kriging模型变量选择[D]. 青岛: 青岛大学, 2021. |
LI H. Comparison of model selection for Kriging model in computer experiments[D]. Qingdao: Qingdao University, 2021. | |
15 | FENG Z H , LI M , WANG X , et al. Step-by-step penalized blind Kriging methods for surrogate modeling[J]. Mathematical Problems in Engineering, 2022, 2022 (1): 1- 8. |
16 |
ZHANG Y C , TAO S , CHEN W , et al. A latent variable approach to Gaussian process modeling with qualitative and quantitative factor[J]. Technometrics, 2020, 62 (3): 291- 302.
doi: 10.1080/00401706.2019.1638834 |
17 |
DENG X , LIN C D , LIU K W , et al. Additive Gaussian process for computer models with qualitative and quantitative factors[J]. Technometrics, 2017, 59 (3): 283- 292.
doi: 10.1080/00401706.2016.1211554 |
18 |
QIAN P Z G , WU H , WU C F J . Gaussian process models for computer experiments with qualitative and quantitative factor[J]. Technometrics, 2008, 50 (3): 383- 396.
doi: 10.1198/004017008000000262 |
19 |
ZHOU Q , QIAN P Z G , ZHOU S . A simple approach to emulation for computer models with qualitative and quantitative factors[J]. Technometrics, 2011, 53 (3): 266- 273.
doi: 10.1198/TECH.2011.10025 |
20 | 金光. 数据分析与建模方法[M]. 北京: 国防工业出版社, 2013. |
JIN G . Data analysis and statistical modeling[M]. Beijing: National Defense Industry Press, 2013. | |
21 |
ZHANG Y , YAO W , YE S Y , et al. A regularization method for constructing trend function in Kriging model[J]. Structural and Multidisciplinary Optimization, 2019, 59 (4): 1221- 1239.
doi: 10.1007/s00158-018-2127-8 |
22 | IVO C , TOM D , PIET D . OoDACE toolbox: a flexible object-oriented kriging implementation[J]. Journal of Machine Learning Research, 2014, 15, 3183- 3186. |
23 | 武雅兰. 含有定量和定性因子计算机试验的Kriging模型[D]. 天津: 南开大学, 2012. |
WU Y L. Kriging model with quantitative and qualitative factors in computer experiments[D]. Tianjin: Nankai University, 2012. | |
24 |
TIBSHIRANI R . Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society. Series B: Methodological, 1996, 58 (1): 267- 288.
doi: 10.1111/j.2517-6161.1996.tb02080.x |
25 |
NG C T , LEE W , LEE Y . In defense of LASSO[J]. Communications in Statistics-Theory and Methods, 2022, 51 (9): 3018- 3042.
doi: 10.1080/03610926.2020.1788080 |
26 |
ZHANG Y , YAO W , CHEN X Q , et al. A penalized blind likelihood Kriging method for surrogate modeling[J]. Structural and Multidisciplinary Optimization, 2020, 61 (2): 457- 474.
doi: 10.1007/s00158-019-02368-7 |
27 |
FENG K X , LU Z Z , LING C Y , et al. An efficient computational method for estimating failure credibility by combining genetic algorithm and active learning Kriging[J]. Structural and Multidisciplinary Optimization, 2020, 62 (2): 771- 785.
doi: 10.1007/s00158-020-02534-2 |
28 |
QIAN P Z G , WU C F J . Sliced space-filling designs[J]. Biometrika, 2009, 96 (4): 945- 956.
doi: 10.1093/biomet/asp044 |
29 |
BA S , MYERS W R , BRENNEMAN W A . Optimal sliced Latin hypercube designs[J]. Technometrics, 2015, 57 (4): 479- 487.
doi: 10.1080/00401706.2014.957867 |
30 |
HUANG H , LIN D K J , LIU M , et al. Computer experiments with both qualitative and quantitative variables[J]. Technometrics, 2016, 58 (4): 495- 507.
doi: 10.1080/00401706.2015.1094416 |
31 | FANG K F K , MA C M C , WINKER P W P . Centered L/sub 2/-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs[J]. Mathematics of Computation, 2002, 71 (237): 275- 296. |
[1] | Shunqi HUAN, Zhemei FAN, Jianbo WANG. System-of-systems effectiveness evaluation method based on functional dependency network [J]. Systems Engineering and Electronics, 2022, 44(7): 2191-2200. |
[2] | Yuhang KE, Yanjun LI, Yuyuan CAO, Xingcheng ZHANG. Research on model-based safety analysis of flight control system [J]. Systems Engineering and Electronics, 2021, 43(11): 3259-3265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||