Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (12): 4173-4182.doi: 10.12305/j.issn.1001-506X.2024.12.26
• Guidance, Navigation and Control • Previous Articles
Chenguang ZHOU1,2, Renyong ZHANG1,*, Chihang YANG3
Received:
2024-01-31
Online:
2024-11-25
Published:
2024-12-30
Contact:
Renyong ZHANG
CLC Number:
Chenguang ZHOU, Renyong ZHANG, Chihang YANG. Design of circumlunar global positioning satellite constellation on DRO in the cislunar space[J]. Systems Engineering and Electronics, 2024, 46(12): 4173-4182.
1 |
NIE T , GURFIL P . Lunar frozen orbits revisited[J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130 (10): 61.
doi: 10.1007/s10569-018-9858-0 |
2 | SIRBU G, LEONARDI M, CAROSI M, et al. Performance evaluation of a lunar navigation system exploiting four satellites in ELFO orbits[C]//Proc. of the IEEE 9th International Workshop on Metrology for AeroSpace, 2022: 146-151. |
3 |
PEREIRA F , REED P M , SELVA D . Multi-objective design of a lunar GNSS[J]. Journal of the Institute of Navigation, 2022, 69 (1): 504.
doi: 10.33012/navi.504 |
4 |
王晓伟, 詹亚锋, 谢浩然, 等. 通导一体化环月星座设计初探[J]. 系统工程与电子技术, 2023, 45 (1): 241- 249.
doi: 10.12305/j.issn.1001-506X.2023.01.28 |
WANG X W , ZHAN Y F , XIE H R , et al. A preliminary study on the design of constellation orbiting the moon with the communication and navigation integration[J]. Systems Engineering and Electronics, 2023, 45 (1): 241- 249.
doi: 10.12305/j.issn.1001-506X.2023.01.28 |
|
5 | PEREIRA F, SELVA D. Exploring the design space of lunar GNSS in frozen orbit conditions[C]//Proc. of the IEEE/ION Position, Location and Navigation Symposium, 2020: 444-451. |
6 | WHITLEY R, MARTINEZ R. Options for staging orbits in cislunar space[C]//Proc. of the IEEE Aerospace Conference, 2016. |
7 | CAROSI M, CAPOLICCHIO J, TOSTI M, et al. Comparison among orbital constellation for a global lunar satellite navigation system[C]//Proc. of the Joint 26th Ka and Broadband Communications Conference and the 38th International Communications Satellite Systems Conference, 2021. |
8 | MUSACCHIO D, IESS L, CAROSI M, et al. Design of earth moon Halo orbits for a global lunar PNT service[C]//Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2021: 966-980. |
9 | FARQUHAR R W . The control and use of libration-point sate-llites[M]. California: Stanford University, 1969. |
10 | CARPENTER J R, FOLTA D, MOREAU M, et al. Libration point navigation concepts supporting the vision for space exploration[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2004: 4747. |
11 |
LIU L , LI J S . CHANG'E-5T1 extended mission: the first lunar libration point flight via a lunar swing-by[J]. Advances in Space Research, 2016, 58 (4): 609- 618.
doi: 10.1016/j.asr.2016.05.015 |
12 |
DUAN J F , WANG Z K . Orbit determination of CE-4's relay satellite in Earth-Moon L2 libration point orbit[J]. Advances in Space Research, 2019, 64 (11): 2345- 2355.
doi: 10.1016/j.asr.2019.08.012 |
13 |
CIRCI C , ROMAGNOLI D , FUMENTI F . Halo orbit dynamics and properties for a lunar global positioning system design[J]. Monthly Notices of the Royal Astronomical Society, 2014, 442 (4): 3511- 3527.
doi: 10.1093/mnras/stu1085 |
14 |
REN Y , SHAN J J . Libration point orbits for lunar global positioning systems[J]. Advances in Space Research, 2013, 51 (7): 1065- 1079.
doi: 10.1016/j.asr.2012.10.022 |
15 |
WANG K , LI K Z , LYU S K , et al. Multi-orbit lunar GNSS constellation design with distant retrograde orbit and Halo orbit combination[J]. Scientific Reports, 2023, 13 (1): 10158.
doi: 10.1038/s41598-023-37348-x |
16 |
GAO Z Y , HOU X Y . Coverage analysis of lunar communication/navigation constellations based on Halo orbits and distant retrograde orbits[J]. The Journal of Navigation, 2020, 73 (4): 932- 952.
doi: 10.1017/S0373463320000065 |
17 | SCHONFELDT M, GRENIER A, DELEPAUT A, et al. Across the lunar landscape: Towards a dedicated lunar PNT system[EB/OL]. [2024-01-16]. https://insidegnss.com/across-the-lunar-landscape-towards-a-dedicated-lunar-pnt-system/. |
18 |
ZHANG R Y . A review of periodic orbits in the circular restricted three-body problem[J]. Journal of Systems Engineering and Electronics, 2022, 33 (3): 612- 646.
doi: 10.23919/JSEE.2022.000059 |
19 | BEZROUK C J, PARKER J. Long duration stability of distant retrograde orbits[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2014: 4424. |
20 |
TURNER G . Results of long-duration simulation of distant retrograde orbits[J]. Aerospace, 2016, 3 (4): 37.
doi: 10.3390/aerospace3040037 |
21 | HILL K A. Autonomous navigation in libration point orbits[D]. Boulder: University of Colorado, 2007. |
22 |
DAI H H , YAN Z P , WANG X C , et al. Collocation-based harmonic balance frame-work for highly accurate periodic solution of nonlinear dynamical system[J]. International Journal for Numerical Methods in Engineering, 2023, 124 (2): 458- 481.
doi: 10.1002/nme.7128 |
23 | 杨驰航. 地月空间远距离逆行轨道相对运动与编队设计[D]. 北京: 中国科学院大学, 2022. |
YANG C H. Spacecraft relative motion and formation design on cislunar-space distant retrograde orbits[D]. Beijing: University of Chinese Academy of Sciences, 2022. | |
24 | KOON W S, LO M W, MARSDEN J E, et al. Dynamical systems, the three-body problem and space mission design[D]. Berlin: World Scientific, 2000: 1167-1181. |
25 | BOUDAD K K. Disposal dynamics from the vicinity of near rectilinear Halo orbits in the Earth-Moon-Sun system[D]. West Lafayette: Purdue University, 2018. |
26 |
GIL A D A , RENWICK D , CAPPELLETTI C , et al. Methodology for optimizing a constellation of a lunar global navigation system with a multi-objective optimization algorithm[J]. Acta Astronautica, 2023, 204, 348- 357.
doi: 10.1016/j.actaastro.2023.01.003 |
27 |
PASQUALE A , ZANOTTI G , PRINETTO J , et al. Cislunar distributed architectures for communication and navigation ser-vices of lunar assets[J]. Acta Astronautica, 2022, 199, 345- 354.
doi: 10.1016/j.actaastro.2022.06.004 |
28 |
ZHANG J Q , SANDERSON A C . JADE: adaptive differential evolution with optional external archive[J]. IEEE Trans.on Evolutionary Computation, 2009, 13 (5): 945- 958.
doi: 10.1109/TEVC.2009.2014613 |
29 |
PIRES P , WINTER O C . Location and stability of distant retrograde orbits around the Moon[J]. Monthly Notices of the Royal Astronomical Society, 2020, 494 (2): 2727- 2735.
doi: 10.1093/mnras/staa887 |
30 | 龚宇鹏, 张世杰. 偶数重连续覆盖的Walker星座设计方法[J]. 宇航学报, 2022, 43 (9): 1163- 1175. |
GONG Y P , ZHANG S J . Design method for even fold continuous coverage walker constellation[J]. Journal of Astronautics, 2022, 43 (9): 1163- 1175. | |
31 |
SIRBU G , LEONARDI M , STALLO C , et al. Evaluation of different satellite navigation methods for the Moon in the future exploration age[J]. Acta Astronautica, 2023, 208, 205- 218.
doi: 10.1016/j.actaastro.2023.04.017 |
32 |
SHARP I , YU K , GUO Y J . GDOP analysis for positioning system design[J]. IEEE Trans.on Vehicular Technology, 2009, 58 (7): 3371- 3382.
doi: 10.1109/TVT.2009.2017270 |
33 | OKABE A , BOOTS B , SUGIHARA K , et al. Spatial tessellations: concepts and applications of Voronoi diagrams[M]. 2nd ed New Jersey: Wiley, 2000. |
34 | BOUWMAN A M , BOSMA J C , VONK P , et al. Which shape factor (s) best describe granules?[J]. Powder Technology, 2004, 146 (1/2): 66- 72. |
[1] | Rui SHU, Qingxian JIA, Dan YU, Yaoke DU. Lunar InSAR satellite formation configuration design based on multi-objective ant-lion optimization algorithm [J]. Systems Engineering and Electronics, 2024, 46(9): 3128-3138. |
[2] | Dawei FAN, Weiwei CAI, Leping YANG, Runde ZHANG. Multi-line-of-sight fusion based configuration design for near-field situation awareness in high orbit [J]. Systems Engineering and Electronics, 2023, 45(12): 3984-3994. |
[3] | Yuan GUO, Zhiyong SUO, Tingting WANG, Zhiquan DING. Configuration parameter optimization design method of MBFL-SAR [J]. Systems Engineering and Electronics, 2023, 45(11): 3449-3454. |
[4] | CHANG Yan, CHEN Yun, XIAN Yong, ZHANG Daqiao, GAO Jing. Configuration design and maintenance of flyaround trajectory for target monitoring in elliptical orbit [J]. Systems Engineering and Electronics, 2017, 39(6): 1317-1324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||