Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (10): 3577-3585.doi: 10.12305/j.issn.1001-506X.2024.10.34
• Communications and Networks • Previous Articles
Li CUI1,2,*, Chengqian XU1
Received:
2022-12-27
Online:
2024-09-25
Published:
2024-10-22
Contact:
Li CUI
CLC Number:
Li CUI, Chengqian XU. Construction of uncorrelated multiple-subset zero correlation zone sequence sets[J]. Systems Engineering and Electronics, 2024, 46(10): 3577-3585.
Table 1
Sequences of S(z) derived from construction method 1"
sm, n | 序列 |
s0, 0 | (0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 2, 5, 0, 0, 2, 5, 0, 0, 4, 1, 0, 0, 4, 1, 0, 0, 0, 3, 1, 1, 1, 4, 2, 2, 4, 1, 0, 0, 2, 5, 1, 1, 5, 2, 2, 2, 0, 3, 0, 0, 0, 3, 2, 2, 2, 5, 4, 4, 0, 3, 0, 0, 2, 5, 2, 2, 0, 3, 4, 4, 2, 5, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 2, 5, 0, 0, 2, 5, 3, 3, 1, 4, 0, 0, 4, 1, 0, 0, 0, 3, 4, 4, 4, 1, 2, 2, 4, 1, 0, 0, 2, 5, 4, 4, 2, 5, 2, 2, 0, 3, 0, 0, 0, 3, 5, 5, 5, 2, 4, 4, 0, 3, 0, 0, 2, 5, 5, 5, 3, 0, 4, 4, 2, 5) |
s0, 1 | (0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 2, 2, 0, 3, 2, 2, 0, 3, 4, 4, 0, 3, 4, 4, 0, 3, 0, 0, 1, 4, 1, 1, 2, 5, 4, 4, 0, 3, 2, 2, 1, 4, 5, 5, 2, 5, 0, 0, 0, 3, 0, 0, 2, 5, 2, 2, 4, 1, 0, 0, 0, 3, 2, 2, 2, 5, 0, 0, 4, 1, 2, 2, 0, 3, 0, 0, 3, 0, 3, 3, 0, 3, 2, 2, 0, 3, 2, 2, 3, 0, 1, 1, 0, 3, 4, 4, 0, 3, 0, 0, 4, 1, 4, 4, 2, 5, 4, 4, 0, 3, 2, 2, 4, 1, 2, 2, 2, 5, 0, 0, 0, 3, 0, 0, 5, 2, 5, 5, 4, 1, 0, 0, 0, 3, 2, 2, 5, 2, 3, 3, 4, 1, 2, 2) |
s0, 2 | (0, 0, 0, 3, 2, 2, 2, 5, 0, 0, 4, 1, 4, 4, 0, 3, 4, 4, 2, 5, 2, 2, 4, 1, 0, 0, 0, 3, 3, 3, 3, 0, 2, 2, 0, 3, 4, 4, 0, 3, 5, 5, 3, 0, 4, 4, 0, 3, 0, 0, 0, 3, 4, 4, 4, 1, 4, 4, 2, 5, 4, 4, 0, 3, 0, 0, 4, 1, 0, 0, 2, 5, 0, 0, 0, 3, 5, 5, 5, 2, 0, 0, 4, 1, 4, 4, 0, 3, 1, 1, 5, 2, 2, 2, 4, 1, 0, 0, 0, 3, 0, 0, 0, 3, 2, 2, 0, 3, 4, 4, 0, 3, 2, 2, 0, 3, 4, 4, 0, 3, 0, 0, 0, 3, 1, 1, 1, 4, 4, 4, 2, 5, 4, 4, 0, 3, 3, 3, 1, 4, 0, 0, 2, 5) |
s0, 3 | (0, 3, 0, 0, 2, 5, 2, 2, 0, 3, 4, 4, 4, 1, 0, 0, 4, 1, 2, 2, 2, 5, 4, 4, 0, 3, 0, 0, 3, 0, 3, 3, 2, 5, 0, 0, 4, 1, 0, 0, 5, 2, 3, 3, 4, 1, 0, 0, 0, 3, 0, 0, 4, 1, 4, 4, 4, 1, 2, 2, 4, 1, 0, 0, 0, 3, 4, 4, 0, 3, 2, 2, 0, 3, 0, 0, 5, 2, 5, 5, 0, 3, 4, 4, 4, 1, 0, 0, 1, 4, 5, 5, 2, 5, 4, 4, 0, 3, 0, 0, 0, 3, 0, 0, 2, 5, 0, 0, 4, 1, 0, 0, 2, 5, 0, 0, 4, 1, 0, 0, 0, 3, 0, 0, 1, 4, 1, 1, 4, 1, 2, 2, 4, 1, 0, 0, 3, 0, 1, 1, 0, 3, 2, 2) |
s0, 4 | (0, 0, 0, 3, 4, 4, 4, 1, 4, 4, 2, 5, 2, 2, 4, 1, 0, 0, 2, 5, 2, 2, 0, 3, 0, 0, 0, 3, 5, 5, 5, 2, 0, 0, 4, 1, 2, 2, 4, 1, 1, 1, 3, 0, 4, 4, 2, 5, 0, 0, 0, 3, 0, 0, 0, 3, 2, 2, 0, 3, 2, 2, 4, 1, 2, 2, 4, 1, 0, 0, 4, 1, 0, 0, 0, 3, 1, 1, 1, 4, 4, 4, 2, 5, 2, 2, 4, 1, 3, 3, 5, 2, 2, 2, 0, 3, 0, 0, 0, 3, 2, 2, 2, 5, 0, 0, 4, 1, 2, 2, 4, 1, 4, 4, 0, 3, 4, 4, 2, 5, 0, 0, 0, 3, 3, 3, 3, 0, 2, 2, 0, 3, 2, 2, 4, 1, 5, 5, 1, 4, 0, 0, 4, 1) |
s0, 5 | (0, 3, 0, 0, 4, 1, 4, 4, 4, 1, 2, 2, 2, 5, 4, 4, 0, 3, 2, 2, 2, 5, 0, 0, 0, 3, 0, 0, 5, 2, 5, 5, 0, 3, 4, 4, 2, 5, 4, 4, 1, 4, 3, 3, 4, 1, 2, 2, 0, 3, 0, 0, 0, 3, 0, 0, 2, 5, 0, 0, 2, 5, 4, 4, 2, 5, 4, 4, 0, 3, 4, 4, 0, 3, 0, 0, 1, 4, 1, 1, 4, 1, 2, 2, 2, 5, 4, 4, 3, 0, 5, 5, 2, 5, 0, 0, 0, 3, 0, 0, 2, 5, 2, 2, 0, 3, 4, 4, 2, 5, 4, 4, 4, 1, 0, 0, 4, 1, 2, 2, 0, 3, 0, 0, 3, 0, 3, 3, 2, 5, 0, 0, 2, 5, 4, 4, 5, 2, 1, 1, 0, 3, 4, 4) |
s1, 0 | (0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 2, 5, 0, 0, 2, 5, 0, 0, 4, 1, 0, 0, 4, 1, 3, 3, 3, 0, 4, 4, 4, 1, 5, 5, 1, 4, 3, 3, 5, 2, 4, 4, 2, 5, 5, 5, 3, 0, 0, 0, 0, 3, 2, 2, 2, 5, 4, 4, 0, 3, 0, 0, 2, 5, 2, 2, 0, 3, 4, 4, 2, 5, 3, 3, 3, 0, 0, 0, 0, 3, 3, 3, 5, 2, 3, 3, 5, 2, 0, 0, 4, 1, 3, 3, 1, 4, 0, 0, 0, 3, 4, 4, 4, 1, 2, 2, 4, 1, 0, 0, 2, 5, 4, 4, 2, 5, 2, 2, 0, 3, 3, 3, 3, 0, 2, 2, 2, 5, 1, 1, 3, 0, 3, 3, 5, 2, 2, 2, 0, 3, 1, 1, 5, 2) |
s1, 1 | (0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 2, 2, 0, 3, 2, 2, 0, 3, 4, 4, 0, 3, 4, 4, 3, 0, 3, 3, 4, 1, 4, 4, 5, 2, 1, 1, 3, 0, 5, 5, 4, 1, 2, 2, 5, 2, 3, 3, 0, 3, 0, 0, 2, 5, 2, 2, 4, 1, 0, 0, 0, 3, 2, 2, 2, 5, 0, 0, 4, 1, 2, 2, 3, 0, 3, 3, 0, 3, 0, 0, 3, 0, 5, 5, 3, 0, 5, 5, 0, 3, 4, 4, 3, 0, 1, 1, 0, 3, 0, 0, 4, 1, 4, 4, 2, 5, 4, 4, 0, 3, 2, 2, 4, 1, 2, 2, 2, 5, 0, 0, 3, 0, 3, 3, 2, 5, 2, 2, 1, 4, 3, 3, 3, 0, 5, 5, 2, 5, 0, 0, 1, 4, 5, 5) |
s1, 2 | (0, 0, 0, 3, 2, 2, 2, 5, 0, 0, 4, 1, 4, 4, 0, 3, 4, 4, 2, 5, 2, 2, 4, 1, 3, 3, 3, 0, 0, 0, 0, 3, 5, 5, 3, 0, 1, 1, 3, 0, 2, 2, 0, 3, 1, 1, 3, 0, 0, 0, 0, 3, 4, 4, 4, 1, 4, 4, 2, 5, 4, 4, 0, 3, 0, 0, 4, 1, 0, 0, 2, 5, 3, 3, 3, 0, 2, 2, 2, 5, 3, 3, 1, 4, 1, 1, 3, 0, 4, 4, 2, 5, 5, 5, 1, 4, 0, 0, 0, 3, 0, 0, 0, 3, 2, 2, 0, 3, 4, 4, 0, 3, 2, 2, 0, 3, 4, 4, 0, 3, 3, 3, 3, 0, 4, 4, 4, 1, 1, 1, 5, 2, 1, 1, 3, 0, 0, 0, 4, 1, 3, 3, 5, 2) |
s1, 3 | (0, 3, 0, 0, 2, 5, 2, 2, 0, 3, 4, 4, 4, 1, 0, 0, 4, 1, 2, 2, 2, 5, 4, 4, 3, 0, 3, 3, 0, 3, 0, 0, 5, 2, 3, 3, 1, 4, 3, 3, 2, 5, 0, 0, 1, 4, 3, 3, 0, 3, 0, 0, 4, 1, 4, 4, 4, 1, 2, 2, 4, 1, 0, 0, 0, 3, 4, 4, 0, 3, 2, 2, 3, 0, 3, 3, 2, 5, 2, 2, 3, 0, 1, 1, 1, 4, 3, 3, 4, 1, 2, 2, 5, 2, 1, 1, 0, 3, 0, 0, 0, 3, 0, 0, 2, 5, 0, 0, 4, 1, 0, 0, 2, 5, 0, 0, 4, 1, 0, 0, 3, 0, 3, 3, 4, 1, 4, 4, 1, 4, 5, 5, 1, 4, 3, 3, 0, 3, 4, 4, 3, 0, 5, 5) |
s1, 4 | (0, 0, 0, 3, 4, 4, 4, 1, 4, 4, 2, 5, 2, 2, 4, 1, 0, 0, 2, 5, 2, 2, 0, 3, 3, 3, 3, 0, 2, 2, 2, 5, 3, 3, 1, 4, 5, 5, 1, 4, 4, 4, 0, 3, 1, 1, 5, 2, 0, 0, 0, 3, 0, 0, 0, 3, 2, 2, 0, 3, 2, 2, 4, 1, 2, 2, 4, 1, 0, 0, 4, 1, 3, 3, 3, 0, 4, 4, 4, 1, 1, 1, 5, 2, 5, 5, 1, 4, 0, 0, 2, 5, 5, 5, 3, 0, 0, 0, 0, 3, 2, 2, 2, 5, 0, 0, 4, 1, 2, 2, 4, 1, 4, 4, 0, 3, 4, 4, 2, 5, 3, 3, 3, 0, 0, 0, 0, 3, 5, 5, 3, 0, 5, 5, 1, 4, 2, 2, 4, 1, 3, 3, 1, 4) |
s1, 5 | (0, 3, 0, 0, 4, 1, 4, 4, 4, 1, 2, 2, 2, 5, 4, 4, 0, 3, 2, 2, 2, 5, 0, 0, 3, 0, 3, 3, 2, 5, 2, 2, 3, 0, 1, 1, 5, 2, 1, 1, 4, 1, 0, 0, 1, 4, 5, 5, 0, 3, 0, 0, 0, 3, 0, 0, 2, 5, 0, 0, 2, 5, 4, 4, 2, 5, 4, 4, 0, 3, 4, 4, 3, 0, 3, 3, 4, 1, 4, 4, 1, 4, 5, 5, 5, 2, 1, 1, 0, 3, 2, 2, 5, 2, 3, 3, 0, 3, 0, 0, 2, 5, 2, 2, 0, 3, 4, 4, 2, 5, 4, 4, 4, 1, 0, 0, 4, 1, 2, 2, 3, 0, 3, 3, 0, 3, 0, 0, 5, 2, 3, 3, 5, 2, 1, 1, 2, 5, 4, 4, 3, 0, 1, 1) |
Table 2
Comparison of uncorrelated multiple-subset ZCZ sequence sets"
来源 | 构造结果 | 集间性能参数 | 限定条件 | 构造基础 |
[ | (LM, [M, N], [M, LM)-ZCZ | 当 | L×L阶DFT矩阵 | |
[ | (KLM, [KM, N], [M, KLM)-ZCZ | 当 | L×L阶DFT矩阵, KM×KM阶正交矩阵 | |
[ | (TLP, [T, L], [P, TLP])-ZCZ | 当gcd(T, P)=1时, η=1 | gcd(L, P)=1 | T×T阶正交矩阵, L×L阶DFT矩阵, 长度为P的完备序列 |
[ | (2LP, [2M, L], [Z, 2LP])-ZCZ | 当Z为偶数, 当Z为奇数, | Z为偶数时, gcd(L, P)=1 | L × L阶矩阵, 长度为P的完备序列 |
定理1 | (QNL, [N, M], [(Z-1)L+1, QNL])-ZCZ | 当L≠1时, | Q=MZ, Z|N, T>1 | 长度为L的N×N阶PU矩阵, Q×Q阶DFT矩阵 |
定理2 | (QNL, [N, M], [(Z-1)NL+1, QNL])-ZCZ | - | 长度矩阵, (Q, [N, M], [Z, Q])-PUZ和LZCZ |
1 |
DENGX M,FANP Z.Spreading sequence sets with zero correlation zone[J].Electronics Letters,2000,36(11):993-994.
doi: 10.1049/el:20000720 |
2 | DAS S, PARAMPALLI U, MAJHI S, et al. Near-optimal zero correlation zone sequence sets from paraunitary matrices[C]// Proc. of the IEEE International Symposium on Information Theory, 2019: 2284-2288. |
3 | ZHANG D. Zero correlation zone sequences from a unified construction of perfect polyphase sequences[C]//Proc. of the IEEE International Symposium on Information Theory, 2019: 2269-2273. |
4 |
ZHANGD,PARKERM G,HELLESETHT.Polyphase zero correlation zone sequences from generalised bent functions[J].Cryptography and Communications,2020,12(3):325-335.
doi: 10.1007/s12095-019-00413-2 |
5 | KUMAR N, MAJHI S, SARKAR P, et al. A direct construction of prime-power-length zero-correlation zone sequences for QS-CDMA system[EB/OL]. [2022-07-06]. http://dx.doi.org/10.48550/arXiv.2111.06675. |
6 | 陈晓玉,高茜超,李永杰.最佳零相关区序列集构造法[J].通信学报,2020,41(8):215-222. |
CHENX Y,GAOX C,LIY J.Construction of optimal zero correlation zone sequence set[J].Journal on Communications,2020,41(8):215-222. | |
7 |
XIEC L,WANGX F,ZHANGL P.Construction and assignment of orthogonal sequences and zero correlation zone sequences over GF(p)[J].IEEE Access,2022,10,107942-107948.
doi: 10.1109/ACCESS.2022.3213281 |
8 | HAN C G, HASHIMOTO T, SUEHIRO N. A novel construction method of zero-correlation zone sequences based on complete complementary codes[C]//Proc. of the IEEE International Symposium on Information Theory, 2008: 1931-1934. |
9 |
LIY B,TIANL Y,ZENGY H.Spectrally-null-constrained ZCZ sequences for MIMO-OFDM channel estimation over non-contiguous carriers[J].IEEE Communications Letters,2023,27(2):442-446.
doi: 10.1109/LCOMM.2022.3229469 |
10 |
CHENC Y,WUS W.Golay complementary sequence sets with large zero correlation zones[J].IEEE Trans.on Communications,2018,66(11):5197-5204.
doi: 10.1109/TCOMM.2018.2857485 |
11 |
YUN Y.Binary Golay spreading sequences and reed-muller codes for uplink grant-free NOMA[J].IEEE Trans.on Communications,2021,69(1):276-290.
doi: 10.1109/TCOMM.2020.3031613 |
12 |
GUZ,ZHOUZ C,ADHIKARYA R,et al.Asymptotically optimal Golay-ZCZ sequence sets with flexible length[J].Chinese Journal of Electronics,2023,32(4):806-820.
doi: 10.23919/cje.2022.00.266 |
13 |
PAIC Y,LINY J,CHENC Y.Optimal and almost-optimal Golay-ZCZ sequence sets with bounded PAPRS[J].IEEE Trans.on Communications,2023,71(2):728-740.
doi: 10.1109/TCOMM.2022.3228932 |
14 | FANG Q P, WANG Z L. A note on "optimum sets of interference- free sequences with zero autocorrelation zone"[C]//Proc. of the IEEE 10th International Conference on Information, Communication and Networks, 2022: 436-443. |
15 |
GUZ,ZHOUZ C,MESNAGERS,et al.A new family of polyphase sequences with low correlation[J].Cryptography and Communications,2022,14(1):135-144.
doi: 10.1007/s12095-021-00522-x |
16 |
TANGX H,FANP Z,MATSUFUJIS.Lower bounds on correlation of spreading sequence set with low or zero correlation zone[J].Electronics Letters,2000,36(6):551-552.
doi: 10.1049/el:20000462 |
17 |
TANGX H,FANP Z,LINDNERJ.Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets[J].IEEE Trans.on Information Theory,2010,56(8):4038-4045.
doi: 10.1109/TIT.2010.2050796 |
18 |
TORⅡH,MATSUMOTOT,NAKAMURAM.A new method for constructing asymmetric ZCZ sequence sets[J].IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences,2012,E95-A(9):1577-1586.
doi: 10.1587/transfun.E95.A.1577 |
19 |
CHENX Y,GAOX C,PENGX Y.Construction of multiple optimal polyphase zero correlation zone sequence sets with inter-set zero cross-correlation zone[J].IEEE Communications Letters,2021,25(9):2795-2799.
doi: 10.1109/LCOMM.2021.3085312 |
20 |
CUIL,CHENX Y,LIY B.A new construction of asymmetric ZCZ sequence sets[J].IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences,2022,E105-A(10):1392-1400.
doi: 10.1587/transfun.2021EAP1159 |
21 | 李玉博,刘涛,陈晓玉.几乎最优二元多子集零相关区序列集构造法[J].电子与信息学报,2018,40(3):705-712. |
LIY B,LIUT,CHENX Y.Construction of almost optimal binary multiple zero correlation zone sequence sets[J].Journal of Electronics and Information Technology,2018,40(3):705-712. | |
22 | WANG Z, REN R B, YE Z F, et al. A new construction of ZCZ sequence sets with inter-set zero cross-correlation zone[C]// Proc. of the 10th International Workshop on Signal Design and its Applications in Communications, 2022. |
23 |
TORⅡH,MATSUMOTOT,NAKAMURAM.Optimal polyphase asymmetric ZCZ sets including uncorrelated sequences[J].Journal of Signal Processing,2012,16(6):487-494.
doi: 10.2299/jsp.16.487 |
24 |
TORⅡH,MATSUMOTOT,NAKAMURAM.Extension of methods for constructing polyphase asymmetric ZCZ sequence sets[J].IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences,2013,E96-A(11):2244-2252.
doi: 10.1587/transfun.E96.A.2244 |
25 |
WANGL Y,ZENGX L,WENH.Asymmetric ZCZ sequence sets with inter-subset uncorrelated sequences via interleaved technique[J].IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences,2017,E100-A(2):751-756.
doi: 10.1587/transfun.E100.A.751 |
26 |
WANGL Y,ZHANGG Y,WENH,et al.An asymmetric ZCZ sequence set with inter-subset uncorrelated property and flexible ZCZ length[J].Advances in Mathematics of Communications,2018,12(3):541-552.
doi: 10.3934/amc.2018032 |
27 |
DASS,MAJHIS,LIUZ L.A novel class of complete complementary codes and their applications for APU matrices[J].IEEE Signal Processing Letters,2018,25(9):1300-1304.
doi: 10.1109/LSP.2018.2849656 |
28 |
DASS,MAJHIS,BUDIŠINS,et al.A new construction framework for polyphase complete complementary codes with various lengths[J].IEEE Trans.on Signal Processing,2019,67(10):2639-2648.
doi: 10.1109/TSP.2019.2908137 |
29 |
TIANL Y,LIY B,ZHOUZ C,et al.Two classes of Z-complementary code sets with good cross-correlation subsets via paraunitary matrices[J].IEEE Trans.on Communications,2021,69(5):2935-2947.
doi: 10.1109/TCOMM.2021.3058371 |
30 |
DASS,BUDISINS,MAJHIS,et al.A multiplier-free generator for polyphase complete complementary codes[J].IEEE Trans.on Signal Processing,2018,66(5):1184-1196.
doi: 10.1109/TSP.2017.2780050 |
31 |
HEIMILLERR.Phase shift pulse codes with good periodic correlation properties[J].IRE Transaction on Information Theory,1961,7(4):254-257.
doi: 10.1109/TIT.1961.1057655 |
[1] | XU Cheng-qian, ZHANG Li-yan. Construction of mutually orthogonal ZCZ sequence pairs set [J]. Systems Engineering and Electronics, 2014, 36(6): 1191-1194. |
[2] | LI Ming-yang, BAI Peng, PENG Wei-dong, WANG Xu-hua, CHANG Yong-chang. Construction of ZCZ sequence set based on correlation product [J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1753-1757. |
[3] | LIU Kai, YU Sai, LI Yu-bo. Construction of two-dimensional quaternary periodic complementary array sets with zero correlation zone [J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 924-929. |
[4] | JIN Ming,LIAO Gui-sheng,LI Jun. Zero correlation zone like polyphase code design based on genetic algorithm [J]. Journal of Systems Engineering and Electronics, 2010, 32(1): 14-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||