Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (3): 997-1009.doi: 10.12305/j.issn.1001-506X.2025.03.32
• Communications and Networks • Previous Articles Next Articles
Lujia DONG1, Tao FENG2,*, Jiaorui HUANG3, Chungang YANG1,3
Received:
2024-01-24
Online:
2025-03-28
Published:
2025-04-18
Contact:
Tao FENG
CLC Number:
Lujia DONG, Tao FENG, Jiaorui HUANG, Chungang YANG. Decoupled control plane structure design for routing protocol with behavior tree[J]. Systems Engineering and Electronics, 2025, 47(3): 997-1009.
1 | 黄兵, 谭斌, 罗鉴, 等. 面向业务和网络协同的未来IP网络架构演进[J]. 电信科学, 2021, 37 (10): 39- 46. |
HUANG B , TAN B , LUO J , et al. Future IP network architecture evolution for service and network collaboration[J]. Telecommunications Science, 2021, 37 (10): 39- 46. | |
2 | 孙杰, 马雷明, 杨爱东, 等. 通算一体驱动的算力内生网络技术与应用[J]. 电信科学, 2023, 39 (8): 127- 135. |
SUN J , MA L M , YANG A D , et al. Computing native network (CNN) technology and application driven by joint communication & computing (JC&C)[J]. Telecommunications Science, 2023, 39 (8): 127- 135. | |
3 | 冷常发, 杨春刚, 彭瑶. 意图驱动的自动驾驶网络技术[J]. 西安电子科技大学学报, 2022, 49 (4): 60- 70. |
LENG C F , YANG C G , PENG Y . Internet-driven autonomous driving networking technology[J]. Journal of Xidian University, 2022, 49 (4): 60- 70. | |
4 | WANG Y X , ZHOU J H , FENG G , et al. Blockchain assisted federated learning for enabling network edge intelligence[J]. IEEE Network, 2022, 37 (1): 96- 102. |
5 | BASICEVIC I, POPOVIC M, VELIKIC I. Use of finite state machine based framework in implementation of communication protocols-a case study[C]//Proc. of the 6th Advanced International Conference on Telecommunications, 2010: 161-166. |
6 | WASEEM Q, WAN DIN W I S, AMINUDDIN A, et al. Software-defined networking (SDN): a review[C]//Proc. of the 5th International Conference on Information and Communications Technology, 2022: 30-35. |
7 |
IOVINO M , SCUKINS E , STYRUD J , et al. A survey of behavior trees in robotics and AI[J]. Robotics and Autonomous Systems, 2022, 154, 104096.
doi: 10.1016/j.robot.2022.104096 |
8 |
FOZILOV K , COLAN J , SEKIYAMA K , et al. Towards autonomous robotic minimally invasive surgery: a hybrid framework combining task-motion planning and dynamic behavior trees[J]. IEEE Access, 2023, 11, 91206- 91224.
doi: 10.1109/ACCESS.2023.3308619 |
9 | IOVINO M, STYRUD J, FALCO P, et al. A framework for learning behavior trees in collaborative robotic applications[C]//Proc. of the IEEE 19th International Conference on Automation Science and Engineering, 2023. |
10 | TULATHUM P, USAWALERTKAMOL B, RICARDEZ G A G, et al. Human-robot interaction system for non-expert users in convenience stores using behavior trees[C]//Proc. of the IEEE/SICE International Symposium on System Integration, 2022: 1072-1077. |
11 | WIJAYA D K, PRIHATMANTO A S, YUSUF R. Behavior tree of agents in multi-agent system on action video game[C]//Proc. of the International Conference on Electrical Engineering and Informatics, 2023. |
12 | RODRIGUES S, RAYAT H K, KURICHITHANAM R M, et al. Shriek: a role playing game using unreal engine 4 and behaviour trees[C]//Proc. of the 4th Biennial International Conference on Nascent Technologies in Engineering, 2021. |
13 | KEDALO A, ZYKOV A, ASLAM H, et al. Comparing behaviour tree and hierarchical task network planning methods for their impact on player experience[C]//Proc. of the IEEE Symposium Series on Computational Intelligence, 2023: 135-139. |
14 | 杨兵, 彭佳, 辛毅. 基于行为树的网电一体作战行动控制建模研究[J]. 火力与指挥控制, 2022, 47 (12): 98-102, 108. |
YANG B , PENG J , XIN Y . Research on modeling of network-electric integrated combat control based on behavior tree[J]. Fire Control & Command Control, 2022, 47 (12): 98-102, 108. | |
15 | WANG U J, FANG W, LIN C, et al. Air-defense decision-making model of single ship CGF based on the theory of fuzzy mathematics and behavior tree[C]//Proc. of the 2nd International Conference on Information Technology and Computer Application, 2020: 755-759. |
16 | DE LA CRUZ P, PIATER J, SAVERIANO M. Reconfigurable behavior trees: towards an executive framework meeting high-level decision making and control layer features[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2020: 1915-1922. |
17 | 赵志稳, 战荫伟. 虚拟会议中基于行为树的智能角色行为建模[J]. 现代电子技术, 2022, 45 (24): 171- 175. |
ZHAO Z W , ZHAN M W . Intelligent characters behavior modeling based on behavior tree in virtual meeting[J]. Modern Electronics Technique, 2022, 45 (24): 171- 175. | |
18 | 史殿习, 苏雅倩文, 李宁, 等. 基于行为树调度的多无人机未知室内空间探索方法[J]. 计算机科学, 2022, 49 (S2): 83- 93. |
SHI D X , SU Y Q W , LI N , et al. Muti-UAV cooperative exploring for large unknown indoor environment based on bahavior tree[J]. Computer Science, 2022, 49 (S2): 83- 93. | |
19 | FENG S, XI J Q, GONG C, et al. A collaborative decision making approach for multi-unmanned combat vehicles based on the behaviour tree[C]//Proc. of the 3rd International Confe-rence on Unmanned Systems, 2020: 395-400. |
20 | GAO X M, FENG T, DU J H, et al. An programmable control plane framework by using behavior tree[C]//Proc. of the 4th International Conference on Hot Information-Centric Networking, 2021: 74-80. |
21 | 杨蓉, 郑建立, 谢雅欣, 等. 基于BehaviorTree的医疗仪器通信协议解析平台设计[J]. 智能计算机与应用, 2023, 13 (9): 141-145, 152. |
YANG R , ZHENG J L , XIE Y X , et al. Design of communication protocol analysis platform for medical instruments based on behavior tree[J]. Intelligent Computer and Applications, 2023, 13 (9): 141-145, 152. | |
22 |
宋睿涛, 高先明, 黄姣蕊, 等. 基于行为树的组网服务管控架构及调度方法[J]. 系统工程与电子技术, 2024, 46 (10): 3547- 3556.
doi: 10.12305/j.issn.1001-506X.2024.10.31 |
SONG R T , GAO X M , HUANG J R , et al. Behavior tree based management and control architecture and scheduling method for networking services[J]. Systems Engineering and Electronics, 2024, 46 (10): 3547- 3556.
doi: 10.12305/j.issn.1001-506X.2024.10.31 |
|
23 | 熊海军, 朱永利, 赵建利, 等. 基于行为树的协议建模方法及其应用研究[J]. 计算机应用研究, 2014, 31 (9): 2696-2699, 2710. |
XIONG H J , ZHU Y L , ZHAO J L , et al. Research on protocol modelling method based on behavior trees and its application[J]. Application Research of Computers, 2014, 31 (9): 2696-2699, 2710. | |
24 | LI Z J , YIN X , WU J P . Use of global behavior tree for conformance testing of OSPF protocol LSDB synchronization[J]. Tsinghua Science and Technology, 2004, 9 (1): 9- 16. |
25 | GHZOULI R , BERGER T , JOHNSEN E B , et al. Behavior trees and state machines in robotics applications[J]. IEEE Trans.on Software Engineering, 2023, 49 (9): 4243- 4267. |
26 | BIGGAR O , ZAMANI M , SHAMES I . An expressiveness hie-rarchy of behavior trees and related architectures[J]. IEEE Robotics and Automation Letters, 2021, 6 (3): 5397- 5404. |
27 | BOJIC I, LIPIC T, KUSEK M, et al. Extending the JADE agent behaviour model with JBehaviourTrees framework[C]//Proc. of the Agent and Multi-Agent Systems: Technologies and Applications: 5th KES International Conference, 2011: 159-168. |
28 | COLLEDANCHISE M , OGREN P . Behavior trees in robotics and AI: an introduction[M]. Boca Raton: CRC Press, 2018: 208. |
29 | SAARISTO S. Implementation of IS-IS routing protocol for IP versions 4 and 6[D]. Tampere: Tampere University of Technology, 2002. |
30 | ISO/IEC 10589. Information technology—telecommunications and information exchange between systems—intermediate system to intermediate system intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473)[S]. Geneva: International Organization for Standardization, 2002. |
31 | RFC 1195. Use of OSI IS-IS for routing in TCP/IP and dual environments[S]. United States: Internet Engineering Task Force, 1990. |
[1] | Ruitao SONG, Xianming GAO, Jiaorui HUANG, Chungang YANG, Tao HUANG, Yuanyuan LI. Behavior tree based management and control architecture and scheduling method for networking service [J]. Systems Engineering and Electronics, 2024, 46(10): 3547-3556. |
[2] | Bowen YUAN, Dongbo LIU, Zhaopeng LIU, Yanan LI. Modeling method of operational plan based on improved behavior tree [J]. Systems Engineering and Electronics, 2023, 45(4): 1111-1120. |
[3] | Xing BI, Chaojing TANG. Security analysis of TLS protocol implementations based on model checking [J]. Systems Engineering and Electronics, 2021, 43(3): 839-846. |
[4] | BI Xing, TANG Chaojing. Security analysis of TLS implementations based on state machine learning algorithm [J]. Systems Engineering and Electronics, 2018, 40(12): 2810-2815. |
[5] | ZHAO Hewei, LIANG Yong, YANG Xiuxia. Anti-input windup dynamic neural networks control for flexible hypersonic vehicles [J]. Systems Engineering and Electronics, 2017, 39(4): 854-865. |
[6] | ZHANG Mengmeng, CHEN Honghui, LUO Aimin, LIU Junxian. #br# C4ISR system structure flexibility analysis based on dynamic adjustment [J]. Systems Engineering and Electronics, 2016, 38(3): 563-568. |
[7] | MI Qiao-li,XU Ting-xue,MENG Lei. Flexible reconfiguration model of ship-borne gun support organization based on polychromatic hierarchical network [J]. Systems Engineering and Electronics, 2014, 36(10): 2000-2006. |
[8] | YAO Li-hong, LI Jun-min. Design of impulsive hybrid controllers for a class of nonlinear hybrid systems [J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1732-1736. |
[9] |
ZHANG Dai-yuan1,2.
Training algorithm for neural networks based on distributed parallel calculation [J]. Journal of Systems Engineering and Electronics, 2010, 32(2): 386-391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||