Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (6): 1732-1742.doi: 10.12305/j.issn.1001-506X.2023.06.17
• Systems Engineering • Previous Articles
Changjiang QIN1,2, Keyu WU1,*, Qing CHENG1, Jincai HUANG1
Received:
2022-01-13
Online:
2023-05-25
Published:
2023-06-01
Contact:
Keyu WU
CLC Number:
Changjiang QIN, Keyu WU, Qing CHENG, Jincai HUANG. Node importance evaluation in dynamic system based on kill-web contribution rate[J]. Systems Engineering and Electronics, 2023, 45(6): 1732-1742.
Table 1
Functional capability attribute (one)"
ID | 通信手段及距离/km | ||||
Ncap1 | Ncap2 | Ncap3 | Ncap4 | Ncap5 | |
1 | 185 | 185 | 555 | 14 816 | 1 111 |
2 | 185 | 185 | 555 | - | 1 111 |
3 | 185 | 185 | 555 | - | 1 111 |
4 | 185 | 185 | 555 | 14 816 | 1 111 |
5 | 185 | 185 | 555 | 14 816 | 1 111 |
6 | 185 | 185 | 555 | 14 816 | 1 111 |
7 | 185 | 185 | 555 | 14 816 | 1 111 |
8 | 185 | 185 | 555 | 14 816 | 1 111 |
9 | - | - | - | - | 1 111 |
10 | 185 | 185 | 555 | 14 816 | 1 111 |
11 | 185 | 185 | 555 | - | 1 111 |
12 | - | - | - | - | 1 111 |
Table 3
Spatiotemporal 1 position coordinates"
ID | TSTime 05:07:04:20:00 (m: d: h: min: s) | TSLat/(°) | TSLon/(°) | TSAlt/km |
1 | 1 | 13.542 607 | 113.734 753 | 0 |
2 | 1 | 13.980 762 | 109.745 932 | 0 |
3 | 1 | 14.049 099 | 109.146 813 | 0 |
4 | 1 | 13.952 474 | 110.994 172 | 0 |
5 | 1 | 11.614 202 | 109.363 797 | 0 |
6 | 1 | 11.146 998 | 110.920 817 | 0 |
7 | 1 | 14.456 138 | 111.836 479 | 0 |
8 | 1 | 13.726 381 | 109.820 160 | 0 |
9 | 1 | 12.655 431 | 114.420 555 | 3 |
10 | 1 | 13.402 329 | 114.355 677 | 0 |
11 | 1 | - | - | - |
12 | 1 | - | - | - |
13 | 1 | 13.910 670 | 108.710 698 | 0 |
14 | 1 | 11.878 581 | 114.288 178 | 0 |
15 | 1 | 12.758 358 | 112.170 976 | 0 |
16 | 1 | 14.733 458 | 110.348 508 | 0 |
17 | 1 | 11.900 482 | 108.962 016 | 0 |
18 | 1 | 14.760 654 | 110.981 743 | 0 |
Table 4
Spatiotemporal 2 position coordinates"
ID | TSTime 05:07:04:30:00 (m: d: h: min: s) | TSLat/(°) | TSLon/(°) | TSAlt/km |
1 | 2 | 11.610 458 | 118.203 294 | 0 |
2 | 2 | 11.337 081 | 121.872 885 | 0 |
3 | 2 | 12.995 028 | 119.078 829 | 0 |
4 | 2 | 14.553 383 | 116.935 968 | 0 |
5 | 2 | 14.085 448 | 109.789 128 | 0 |
6 | 2 | 13.933 100 | 119.096 404 | 0 |
7 | 2 | 13.797 684 | 117.558 210 | 0 |
8 | 2 | 12.237 160 | 113.191 371 | 0 |
9 | 2 | 12.465 240 | 115.931 316 | 3.7 |
10 | 2 | 14.417 057 | 115.672 591 | 0 |
11 | 2 | - | - | - |
12 | 2 | - | - | - |
13 | 2 | 12.407 351 | 112.712 802 | 0 |
14 | 2 | 13.409 041 | 115.306 136 | 0 |
15 | 2 | 12.669 692 | 115.149 238 | 0 |
16 | 2 | 14.334 506 | 117.682 938 | 0 |
17 | 2 | 12.170 132 | 117.203 622 | 0 |
18 | 2 | 14.367 496 | 116.141 945 | 0 |
Table 5
Spatiotemporal 3 position coordinates"
ID | TSTime 05:07:04:40:00 (m: d: h: min: s) | TSLat/(°) | TSLon/(°) | TSAlt/km | |
1 | 3 | 12.790 145 | 110.790 819 | 0 | |
2 | 3 | 13.960 196 | 110.717 828 | 0 | |
3 | 3 | 15.791 066 | 121.548 277 | 0 | |
4 | 3 | 11.115 439 | 109.713 689 | 0 | |
5 | 3 | 11.523 498 | 109.765 455 | 0 | |
6 | 3 | 13.823 695 | 115.841 502 | 0 | |
7 | 3 | 11.245 976 | 116.896 690 | 0 | |
8 | 3 | 16.337 942 | 118.358 703 | 0 | |
9 | 3 | 16.132 825 | 116.149 067 | 3.30 | |
10 | 3 | 15.136 830 | 110.804 571 | 0 | |
11 | 3 | 13.684 155 | 114.270 466 | 0 | |
12 | 3 | 13.699 130 | 114.175 680 | 3.96 | |
13 | 3 | 11.944 040 | 120.855 720 | 0 | |
14 | 3 | 16.334 405 | 109.932 755 | 0 | |
15 | 3 | 17.569 961 | 117.329 119 | 0 | |
16 | 3 | 13.000 217 | 108.049 309 | 0 | |
17 | 3 | 13.722 591 | 110.225 195 | 0 | |
18 | 3 | 11.456 357 | 110.925 393 | 0 |
1 | GREGORY S M. Time critical targeting: predictive Vs. reactionary methods-an analysis for the future[D]. Alabama: Air University, 2002. |
2 | BRYAN C D P , HARRISON S . Mosaic warfare: exploiting artificial intelligence and autonomous systems to implement decision centric operations[J]. Washington: Center for Strategy and Budgetary Assessments, 2020, 32- 41. |
3 | FREEMAN L C . A set of measures of centrality based on betweenness[J]. Ciometry, 1977, 40 (1): 35- 41. |
4 | FREEMAN L C . Centrality in social networks conceptual clarification[J]. Social Networks, 1979, 1 (3): 215- 239. |
5 |
ALBERT R , JEONG H , BARABÁSI A L . Internet: diameter of the world-wide web[J]. Nature, 1999, 401 (6749): 130- 131.
doi: 10.1038/43601 |
6 |
LOHMANN G , MARGULIES D S , HORSTMANN A , et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain[J]. PLoS One, 2010, 5 (4): e10232.
doi: 10.1371/journal.pone.0010232 |
7 | BRIN S , PAGE L . The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30 (1): 107- 117. |
8 | SHENG J F , J DAI J Y , WANG B , et al. Identifying influential nodes in complex networks based on global and local structure[J]. Physica A: Statistical Mechanics and its Applications, 2020, 541, 122481. |
9 |
QIU L Q , ZHANG J Y , TIAN X B . Ranking influential nodes in complex networks based on local and global structures[J]. Applied Intelligence, 2021, 51 (7): 4394- 4407.
doi: 10.1007/s10489-020-02132-1 |
10 | XU G Q , MENG L , TU D Q , et al. LCH: a local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks[J]. Chinese Physics B, 2021, 30 (8): 566- 574. |
11 | 姜志鹏, 张多林, 王乐, 等. 多维约束下指挥网络节点重要度的评估方法[J]. 解放军理工大学学报(自然科学版), 2015, 16 (3): 294- 298. |
JIANG Z P , ZHANG D L , WANG L , et al. Evaluation method for node importance of command network with multiple constraints[J]. Journal of PLA University of Science and Techno-logy (Natural Science Edition), 2015, 16 (3): 294- 298. | |
12 |
YANG G L , ZHANG W M , XIU B X , et al. Key potential-oriented criticality analysis for complex military organization based on FINC-E model[J]. Computational and Mathematical Organization Theory, 2014, 20 (3): 278- 301.
doi: 10.1007/s10588-013-9163-0 |
13 | GAO X , LI K Q , CHEN B . Invulnerability measure of a military heterogeneous network based on network structure entropy[J]. IEEE Access, 2017, 6, 6700- 6708. |
14 | 张明梅. 基于功能链的陆军师级武器装备体系作战能力评估[D]. 长沙: 国防科技大学, 2014. |
ZHANG M M. Evaluation of operational capability of land force's weapon equipment system of systems based on function chain[D]. Changsha: National University of Defense Techno-logy, 2014. | |
15 | 罗金亮, 金家才, 王雷. 基于功能贡献度的网络化防空节点重要性评价方法[J]. 计算机科学, 2018, 45 (2): 175- 180.175-180, 202 |
LUO J L , JIN J C , WANG L . Evaluation method for node importance in air defense networks based on functional contribution degree[J]. Computer Science, 2018, 45 (2): 175- 180.175-180, 202 | |
16 | 李清韦, 刘俊先, 陈涛. 基于活动环路的作战网络节点重要度评估方法[J]. 火力与指挥控制, 2019, 44 (8): 12- 16. |
LI Q W , LIU J X , CHEN T . Method for node importance evaluation in operational network based on active loop[J]. Fire Control & Command Control, 2019, 44 (8): 12- 16. | |
17 |
LI J C , JIANG J , YANG KW , et al. Research on functional robustness of heterogeneous combat networks[J]. IEEE Systems Journal, 2019, 13 (2): 1487- 1495.
doi: 10.1109/JSYST.2018.2828779 |
18 |
LI J C , ZHAO D L , JIANG J , et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2021, 51 (2): 696- 704.
doi: 10.1109/TSMC.2018.2882782 |
19 |
LI J C , ZHAO D L , GE B F , et al. Disintegration of operational capability of heterogeneous combat networks under incomplete information[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2020, 50 (12): 5172- 5179.
doi: 10.1109/TSMC.2018.2867532 |
20 | 李尔玉, 龚建兴, 黄健. 基于功能链的融合网络功能抗毁性评估[J]. 兵工学报, 2019, 40 (7): 1450- 1459. |
LI E Y , GONG J X , HUANG J . Analysis about functional invulnerability of convergent network based on function chain[J]. Acta Armamentarii, 2019, 40 (7): 1450- 1459. | |
21 | 杨迎辉, 李建华, 沈迪, 等. 多重边融合复杂网络动态演化模型[J]. 西安交通大学学报, 2016, 50 (9): 132- 139. |
YANG Y H , LI J H , SHEN D , et al. Dynamic evolution model of united complex networks with multi-links[J]. Journal of Xi'an Jiao Tong University, 2016, 50 (9): 132- 139. | |
22 | 朱涛, 梁维泰, 黄松华, 等. 面向任务的网络信息体系建模分析方法研究[J]. 系统仿真学报, 2020, 32 (4): 727- 737. |
ZHU T , LIANG W T , HUANG S H , et al. Research on modeling and analyzing method of task-oriented network information system of systems[J]. Journal of System Simulation, 2020, 32 (4): 727- 737. | |
23 | DEKKER A . Applying social network analysis concepts to military C4ISR architectures[J]. Connections, 2002, 24 (3): 93- 103. |
24 | 夏博远, 杨克巍, 杨志伟, 等. 基于杀伤网评估的装备组合多目标优化[J]. 系统工程与电子技术, 2021, 43 (2): 399- 409. |
XIA B Y , YANG K W , YANG Z W , et al. Multi-objective optimization of equipment portfolio based on kill-web evaluation[J]. Systems Engineering and Electronics, 2021, 43 (2): 399- 409. | |
25 |
QIN C , LIANG Y , HUANG J , et al. Node capability depen-dency importance evaluation of heterogeneous target operational network[J]. Evolutionary Intelligence, 2022,
doi: 10.1007/s12065-022-00712-3 |
26 | 王茂桓, 刘泽苁, 梁浩哲, 等. 多类型体系贡献率评估的综合问题研究[J]. 系统工程与电子技术, 2022, 44 (5): 1572- 1580. |
WANG M H , LIU Z C , LIANG H Z , et al. Research on comprehensive problem of evaluating multi-type contribution rate to system-of-systems[J]. Systems Engineering and Electronics, 2022, 44 (5): 1572- 1580. | |
27 | 周琛, 宋笔锋, 尚柏林, 等. 基于作战网络可靠度的体系贡献率评估[J]. 系统工程与电子技术, 2021, 43 (7): 1875- 1883. |
ZHOU C , SONG B F , SHANG B L , et al. System of systems contribution rate evaluation based on operational network reliability[J]. Systems Engineering and Electronics, 2021, 43 (7): 1875- 1883. | |
28 | 周琛, 尚柏林, 宋笔锋, 等. 基于作战环的航空武器装备体系贡献率评估[J]. 航空学报, 2022, 43 (2): 224958. |
ZHOU C , SHANG B L , SONG B F , et al. Contribution evaluation of aviation armament system-of-systems based on operation loop[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (2): 224958. | |
29 | 张大信, 王超, 郭基联, 等. 基于结构和功能的改进CRITIC体系贡献率评估方法[J]. 火力与指挥控制, 2021, 46 (6): 39- 46. |
ZHANG D X , WANG C , GUO J L , et al. Improved evaluation method of contribution ratio of CRITIC system based on structure and function[J]. Fire Control & Command Control, 2021, 46 (6): 39- 46. | |
30 | 周璇, 何锋, 谷晓燕, 等. 航电系统体系贡献率权重演化动态综合评估[J]. 系统工程与电子技术, 2020, 42 (8): 1740- 1750. |
ZHOU X , HE F , GU X Y , et al. Dynamic comprehensive evaluation with weight evolution for system contribution rate of avionics systems[J]. Systems Engineering and Electronics, 2020, 42 (8): 1740- 1750. | |
31 | 张先超, 马亚辉. 体系能力模型与装备体系贡献率测度方法[J]. 系统工程与电子技术, 2019, 41 (4): 843- 849. |
ZHANG X C , MA Y H . Capability model of combat system of systems and measurement method of armament contribution to combat system of systems[J]. Systems Engineering and Electronics, 2019, 41 (4): 843- 849. |
[1] | Maohuan WANG, Zecong LIU, Haozhe LIANG, Yingchao ZHANG, Lei SUN. Research on comprehensive problem of evaluating multi-type contribution rate to system-of-systems [J]. Systems Engineering and Electronics, 2022, 44(5): 1572-1580. |
[2] | Depeng KONG, Yiqing MA, Baohua ZHENG, Qi WANG, Zhiqiang ZHANG, Zhenqiang ZHAO. Contribution rate assessment method of maritime joint operations equipment system of systems for uncertain multi-mission scenes [J]. Systems Engineering and Electronics, 2022, 44(12): 3775-3782. |
[3] | Min DU, Zhonghua CHENG, Enzhi DONG. Research on contribution rate evaluation theory of army air defense brigade equipment system [J]. Systems Engineering and Electronics, 2022, 44(1): 209-217. |
[4] | Chen ZHOU, Bifeng SONG, Bolin SHANG, Yaozu WANG, Erqin KE. System of systems contribution rate evaluation based on operational network reliability [J]. Systems Engineering and Electronics, 2021, 43(7): 1875-1883. |
[5] | Boyuan XIA, Kewei YANG, Zhiwei YANG, Xiaoke ZHANG, Danling ZHAO. Multi-objective optimization of equipment portfolio based on kill-web evaluation [J]. Systems Engineering and Electronics, 2021, 43(2): 399-409. |
[6] | Xing PAN, Dujun ZUO, Yuedong ZHANG. Contribution rate evaluation method of equipment system-of-systems based on system dynamics [J]. Systems Engineering and Electronics, 2021, 43(1): 112-120. |
[7] | Guixiang FANG, Yuejin TAN, Mu ZHANG, Xiaodong BU, Jun ZHANG. Evaluation of relative contribution rate of missile weapon system-of-systems based on combat ring [J]. Systems Engineering and Electronics, 2020, 42(8): 1734-1739. |
[8] | Xuan ZHOU, Feng HE, Xiaoyan GU, Zirui JIA, Huagang XIONG. Dynamic comprehensive evaluation with weight evolution forsystem contribution rate of avionics systems [J]. Systems Engineering and Electronics, 2020, 42(8): 1740-1750. |
[9] | Junwen MA, An ZHANG, Fei GAO, Wenhao BI. Evaluation of weapon equipment contribution rate to system-of- systems based on belief rule-based system [J]. Systems Engineering and Electronics, 2020, 42(7): 1519-1526. |
[10] | LUO Chengkun, CHEN Yunxiang, XIANG Huachun, WANG Lili. Review of the evaluation methods of equipment’s contribution rate to system-of-systems [J]. Systems Engineering and Electronics, 2019, 41(8): 1789-1794. |
[11] | CHEN Wenying, ZHANG Bingzhi, YANG Kewei. Contribution rate evaluation for requirement demonstration of a new weapon equipment system [J]. Systems Engineering and Electronics, 2019, 41(8): 1795-1801. |
[12] | DENG Yingjie, ZHANG Xianku, ZHANG Guoqing. Dynamic positioning system of marine surface vessel with ESO and input saturation control [J]. Systems Engineering and Electronics, 2019, 41(5): 1110-1117. |
[13] | YANG Kewei, YANG Zhiwei, TAN Yuejin, ZHAO Qingsong. Review of the evaluation methods of equipment system of systems facing the contribution rate [J]. Systems Engineering and Electronics, 2019, 41(2): 311-321. |
[14] | LU Cheng, XU Tingxue, ZHAO Jun. Equipment condition assessment method based on cloud matter element model of DSm evidence [J]. Systems Engineering and Electronics, 2017, 39(7): 1549-1554. |
[15] | GUO Jian-bin, DU Shao-hua, WANG Xin, ZENG Sheng-kui. Fault hybrid propagation and modeling method for dynamic system [J]. Systems Engineering and Electronics, 2015, 37(1): 224-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||