Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (4): 1247-1260.doi: 10.12305/j.issn.1001-506X.2023.04.35
• Reliability • Previous Articles
Weiguang FANG, Zhaowei NIE, Chenning LIU, Hao LI, Yang NA, Huixiong WANG, Dongpao HONG
Received:
2022-02-17
Online:
2023-03-29
Published:
2023-03-28
Contact:
Dongpao HONG
CLC Number:
Weiguang FANG, Zhaowei NIE, Chenning LIU, Hao LI, Yang NA, Huixiong WANG, Dongpao HONG. Research on digital twin driven intelligent weaponry support technology[J]. Systems Engineering and Electronics, 2023, 45(4): 1247-1260.
Table 1
General technology and description of digital twin"
技术类别 | 关键技术 | 关键技术说明 |
数据采集与处理技术 | 状态感知技术 | 以二维码、射频标签等为代表的标识识别技术, 及各类物理型、化学型和生物型等传感器技术。 |
数据处理技术 | 从数据的完整性和准确性两个方面, 对各类采集数据清洗、去冗余等数据预处理技术。 | |
数据传输与融合技术 | 数据传输技术 | 包括无线通信、通信中继、有线通信、数据编码及通信协议技术等。 |
数据融合技术 | 对不同数据源中相同含义、实体的数据之间的关联关系, 对相似或不同特征模式的多源数据依据其交叉相关性动态融合。 | |
模型构建与仿真技术 | 孪生建模技术 | 基于数据的快速场景重构技术能够解决物理场景向虚拟场景的快速转换, 解决三维场景构建问题。 |
仿真技术 | 面向未知任务和未知场景, 推演态势发展及任务执行过程, 为任务规划和决策提供支撑。 | |
数据分析与决策技术 | 数据分析技术 | 基于海量数据进行数据挖掘分析, 获取表征数据隐藏的深层次信息的技术和方法, 是提升数据价值的方法。 |
优化决策技术 | 以机器学习、神经网络等为代表的有监督和无监督学习技术, 是提升计算机自主决策能力关键技术。 | |
自动控制与交互技术 | 自动控制技术 | 通过具有一定控制功能的自动控制系统, 来完成某种控制任务, 保障某个过程按照预想进行, 或实现某个预设目标。 |
用户交互技术 | 以增强现实技术为代表的交互技术实现用户与虚拟环境中虚拟物理自然直观的三维交互, 并执行用户对空间的控制指令。 |
1 | 董骁雄, 陈云翔, 孟祥飞, 等. 装备寿命周期备件供应网络优化方法[J]. 国防科技大学学报, 2018, 40 (4): 127- 133. |
DONG X X , CHEN Y X , MENG X F , et al. Supply network optimization for spare parts of equipment based on the life cycle[J]. Journal of National University of Defense Technology, 2018, 40 (4): 127- 133. | |
2 | 雷宁, 曹继平, 王连锋, 等. 装备维修备件资源优化配置研究[J]. 飞航导弹, 2020, (3): 84- 87. |
LEI N , CAO J P , WANG L F , et al. Research on optimal allocation of spare parts resources for equipment maintenance[J]. Aerodynamic Missile Journal, 2020, (3): 84- 87. | |
3 |
BOUSDEKIS A , MAGOUTAS B , APOSTOLOU D , et al. Review, analysis and synthesis of prognostic-based decision support methods for condition based maintenance[J]. Journal of Intelligent Manufacturing, 2018, 29, 1303- 1316.
doi: 10.1007/s10845-015-1179-5 |
4 | 牛伟, 成娟, 赵建平. 数据驱动的航空装备协同分析与智能保障决策方法[J]. 科学技术与工程, 2021, 21 (24): 10531- 10535. |
NIU W , CHENG J , ZHAO J P . Data-driven collaborative analysis of aviation equipment and intelligent support decision-making method[J]. Science Technology and Engineering, 2021, 21 (24): 10531- 10535. | |
5 | 徐刚, 张磊, 田磊. 航空弹药技术保障模拟训练智能评估[J]. 系统仿真学报, 2020, 32 (6): 1103- 1116. |
XU G , ZHANG L , TIAN L . Intelligent evaluation of simulation training for aerial ammunition technical support[J]. Journal of System Simulation, 2020, 32 (6): 1103- 1116. | |
6 | 王双川, 贾希胜, 李锋, 等. 基于仿真的合成部队装备维修保障资源需求确定和效能评估[J]. 兵工学报, 2020, 41 (8): 1646- 1657. |
WANG S C , JIA X S , LI F , et al. Resources demand determination and effectiveness evaluation of equipment support based on simulation for combined arms[J]. Acta Armamentarii, 2020, 41 (8): 1646- 1657. | |
7 |
HU Q , BOYLAN J E , CHEN H , et al. OR in spare parts management: a review[J]. European Journal of Operational Research, 2018, 266 (2): 395- 414.
doi: 10.1016/j.ejor.2017.07.058 |
8 | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25 (1): 1- 18. |
TAO F , LIU W R , ZHANG M , et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing System, 2019, 25 (1): 1- 18. | |
9 | ZHANG M , SUI F Y , LIU A , et al. Digital twin driven smart product design framework[J]. Academic Press, 2020, 3- 32. |
10 |
DUAN J G , MA T Y , ZHANG Q L , et al. Design and application of digital twin system for the blade-rotor test rig[J]. Journal of Intelligent Manufacturing, 2021,
doi: 10.1007/s10845-021-01824-w |
11 |
SHAO G D , HELU M . Framework for a digital twin in manufacturing: scope and requirements[J]. Manufacturing Letters, 2020, 24, 105- 107.
doi: 10.1016/j.mfglet.2020.04.004 |
12 | ABOTT R . U.S. Navy performs final SPY-6 AMDR developmental flight test[J]. Defense Daily, 2019, (FEB.6): 7. |
13 | JENNINGS G . Lockheed Martin prepares for F-35 ramp-up[J]. Jane's Defence Weekly, 2015, 52 (25): 14. |
14 | FOURGEAU E , GOMEZ E , ADLI H , et al. System engineering workbench for multi-views systems methodology with 3DEXPERIENCE platform: the aircraft RADAR use case[J]. Advances in Intelligent Systems and Computing, 2016, 426, 269- 270. |
15 | GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U.S. Air Force vehicles[C]//Proc. of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2012. |
16 | 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 2019, 25 (10): 2405- 2418. |
TAO F , MA X , HU T L , et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing System, 2019, 25 (10): 2405- 2418. | |
17 | 刘蔚然, 陶飞, 程江峰, 等. 数字孪生卫星: 概念、关键技术及应用[J]. 计算机集成制造系统, 2020, 26 (3): 565- 588. |
LIU W R , TAO F , CHENG J F , et al. Digital twin satellite: concept, key technology and applications[J]. Computer Integrated Manufacturing System, 2020, 26 (3): 565- 588. | |
18 | 刘娟, 庄存波, 刘检华, 等. 基于数字孪生的生产车间运行状态在线预测[J]. 计算机集成制造系统, 2021, 27 (2): 467- 477. |
LIU J , ZHUANG C B , LIU J H , et al. Online prediction technology of workshop operating status based on digital twin[J]. Computer Integrated Manufacturing Systems, 2021, 27 (2): 467- 477. | |
19 | TAO F , ZHANG M , LIU Y S . Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals, 2018, 67 (1): 169- 172. |
20 | LU Y , LIU C , WANG I K , et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer Integrated Manufacturing, 2020, 61, 101837. |
21 | 郭具涛, 洪海波, 钟珂珂, 等. 基于数字孪生的航天制造车间生产管控方法[J]. 中国机械工程, 2020, 31 (7): 808- 814. |
GUO J T , HONG H B , ZHONG K K , et al. Production management and control method of aerospace manufacturing workshops based on digital twin[J]. China Mechanical Engineering, 2020, 31 (7): 808- 814. | |
22 | 李浩, 文笑雨, 张新生, 等. 基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J]. 计算机集成制造系统, 2019, 25 (6): 1320- 1336. |
LI H , WEN X Y , ZHANG X S , et al. Integration framework and key technologies of complex product design-manufacturing based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25 (6): 1320- 1336. | |
23 | TAO F , CHENG J , QI Q. , et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94, 3563- 3576. |
24 | 李琳利, 李浩, 顾复, 等. 基于数字孪生的复杂机械产品多学科协同设计建模技术[J]. 计算机集成制造系统, 2019, 25 (6): 1307- 1319. |
LI L L , LI H , GU F , et al. Multidisciplinary collaborative design modeling technologies for complex mechanical products based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25 (6): 1307- 1319. | |
25 | 周军华, 薛俊杰, 李鹤宇, 等. 关于武器系统数字孪生的若干思考[J]. 系统仿真学报, 2020, 32 (4): 539- 552. |
ZHOU J H , XUE J J , LI H Y , et al. Thinking on digital twin for weapon system[J]. Journal of System Simulation, 2020, 32 (4): 539- 552. | |
26 | 刘瑜, 谢强. 数字孪生的技术特点及在飞行试验中的应用展望[J]. 系统仿真学报, 2021, 33 (6): 1364- 1373. |
LIU Y , XIE Q . Technical characteristics of digital twin and application prospects in the field of flight testing[J]. Journal of System Simulations, 2021, 33 (6): 1364- 1373. | |
27 | 叶伦宽. 基于数字孪生的旋转设备故障诊断技术研究[D]. 北京: 中国石油大学, 2019. |
YE L K. Research on diagnosis technology of rotating equipment based on digital twin[D]. Beijing: China University of Petroleum, 2019. | |
28 | 王旭东, 陈奡, 宦国杨, 等. 面向作战指挥的数字孪生应用[J]. 指挥信息系统与技术, 2021, 12 (6): 26- 32. |
WANG X D , CHEN A , HUAN G Y , et al. Application of digital twin for command and control[J]. Command Information System and Technology, 2021, 12 (6): 26- 32. | |
29 | 黄少华, 郭宇, 查珊珊, 等. 离散车间制造物联网及其关键技术研究与应用综述[J]. 计算机集成制造系统, 2019, 25 (2): 284- 302. |
HUANG S H , GUO Y , ZHA S S , et al. Review on internet-of-things and key technologies for discrete workshop[J]. Computer Integrated Manufacturing Systems, 2019, 25 (2): 284- 302. | |
30 | 方伟光, 郭宇, 黄少华, 等. 大数据驱动的离散制造车间生产过程智能管控方法研究[J]. 机械工程学报, 2021, 57 (20): 277- 291. |
FANG W G , GUO Y , HUANG S H , et al. Big data driven intelligent production control of discrete manufacturing process[J]. Journal of Mechanical Engineering, 2021, 57 (20): 277- 291. | |
31 | 闫杰, 符文星, 张凯, 等. 武器系统仿真技术发展综述[J]. 系统仿真学报, 2019, 31 (9): 1775- 1789. |
YAN J , FU W X , ZHANG K , et al. Review of the weapon system simulation technology[J]. Journal of System Simulation, 2019, 31 (9): 1775- 1789. | |
32 | 冯蕴雯, 陈俊宇, 路成. 民用飞机多地域航材支援网络模型研究[J]. 系统工程与电子技术, 2022, 44 (5): 1553- 1561. |
FENG Y W , CHEN J Y , LU C . Research on civil aircraft spare parts multi-region support network model[J]. Systems Engineering and Electronics, 2022, 44 (5): 1553- 1561. | |
33 | 潘星, 张振宇, 张艳梅, 等. 基于Sobol敏感性分析的装备体系保障效能评估[J]. 系统工程与电子技术, 2021, 43 (2): 390- 398. |
PAN X , ZHANG Z Y , ZHANG Y M , et al. Equipment SoS support effectiveness evaluation based on Sobol sensitivity ana-lysis[J]. Systems Engineering and Electronics, 2021, 43 (2): 390- 398. | |
34 | 陶伟琪, 魏宇. 战场资源统一管理和调度技术综述[J]. 自动化与仪器仪表, 2021, (7): 55- 63. |
TAO W Q , WEI Y . Overview of unified management and scheduling technology of battlefield resources[J]. Automation & Instrumentation, 2021, (7): 55- 63. |
[1] | Yiyang LUO, Qingsong ZHAO, Huachao LI, Yong LI, Jianbin SUN. Framework and modeling method of weaponry utilization knowledge [J]. Systems Engineering and Electronics, 2022, 44(3): 841-849. |
[2] | Peng WANG, Mei YANG, Jiancheng ZHU, Rusheng JU, Ge LI. Dynamic data driven modeling and simulation method for digital twin [J]. Systems Engineering and Electronics, 2020, 42(12): 2779-2786. |
[3] | PAN Xing, ZHANG Zhenyu, ZHANG Manli, ZHANG Guozhong. Research on RMS demonstration method of equipment SoS Based on SoSE [J]. Systems Engineering and Electronics, 2019, 41(8): 1771-1779. |
[4] | LIANG Jialin, XIONG Wei. Capabilities assessment of the weaponry system based on combat ring [J]. Systems Engineering and Electronics, 2019, 41(8): 1810-1819. |
[5] | ZHANG Ji, LI Shu, HE Tian-peng, JIAN Cheng-wen. Research on the comprehensive evaluation model of helicopter RMS and testability [J]. Systems Engineering and Electronics, 2016, 38(2): 470-475. |
[6] | XU Yongcheng, LI Yue, CHEN Xun. Integrated design of RMS based on coupling modeling and knowledge flow [J]. Journal of Systems Engineering and Electronics, 2013, 35(7): 1564-1570. |
[7] | GUO Lin-han, BIAN Jie-hui, WANG Nai-chao, KANG Rui. Optimal approach for level of repair analysis in concept phase based on PSO algorithm [J]. Journal of Systems Engineering and Electronics, 2013, 35(1): 97-101. |
[8] | LU Yan-jing, CHENG Ben, CHEN Ying-wu, ZHAO Qing-song. Capability weightiness degree analysis of weaponry system of systems based on BN theory [J]. Journal of Systems Engineering and Electronics, 2012, 34(8): 1605-1612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||