Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (3): 773-778.doi: 10.12305/j.issn.1001-506X.2021.03.22
• Guidance, Navigation and Control • Previous Articles Next Articles
Zhiming ZHOU(), Fan LIN(
), Xiaoxian YAO(
), Xiaodong SONG(
)
Received:
2020-06-01
Online:
2021-03-01
Published:
2021-03-16
CLC Number:
Zhiming ZHOU, Fan LIN, Xiaoxian YAO, Xiaodong SONG. Analysis and suppression of the limit cycle about electric actuator[J]. Systems Engineering and Electronics, 2021, 43(3): 773-778.
1 | KIM J , WHANG I H . Augmented three-loop autopilot structure based on mixed-sensitivity optimization[J]. Journal of Guidance, Control, and Dynamics, 2018, 43 (3): 748- 753. |
2 | 周伟.旋转弹动态稳定性与鲁棒变增益控制[D].北京: 北京理工大学, 2016: 27-31. |
ZHOU W. Dynamic stability and robust gain-scheduling control of spinning missiles[D]. Beijing: Beijing Institute of Technology, 2016: 27-31. | |
3 |
ZHOU W , YANG S X , DONG J L . Coning motion instability of spinning missiles induced by hinge moment[J]. Aerospace Science and Technology, 2013, 30 (1): 239- 245.
doi: 10.1016/j.ast.2013.08.008 |
4 | YOUSOF K , MOHAMMAD R A , AHMAD R V , et al. Dynamic stability conditions for a rolling flight vehicle applying continuous actuator[J]. Aerospace Science and Technology, 2015, 30, 451- 458. |
5 | 王婷, 张昆峰, 武飞. 基于模型的舵机非线性因素补偿控制研究[J]. 航空兵器, 2018, (2): 34- 37. |
WANG T , ZHANG K F , WU F . Study of model-based nonlinear compensate control for the servo system[J]. Aero Weaponry, 2018, (2): 34- 37. | |
6 | 黄立梅, 吴成富, 马松辉. 抑制飞控系统舵机间隙影响的非线性补偿器设计[J]. 飞行力学, 2012, 30 (2): 132- 138. |
HUANG L M , WU C F , MA S H . Design of a nonlinear compensator for depressing the influence ofactuator's clearance in flight control system[J]. Flight Dynamics, 2012, 30 (2): 132- 138. | |
7 |
ZHOU W , YANG S X , ZHAO L Y . Limit cycle of low spinning projectiles induced by the backlash of actuators[J]. Aerospace Science and Technology, 2017, 69, 595- 601.
doi: 10.1016/j.ast.2017.07.030 |
8 | 李宗星, 张锐. 带有死区环节的电动舵机鲁棒控制技术[J]. 现代防御技术, 2019, 47 (3): 64- 70. |
LI Z X , ZHANG R . Robust control of electric steering engine with dead zone[J]. Modern Defense Technology, 2019, 47 (3): 64- 70. | |
9 |
NORDIN M , GUTMAN P O . Controlling mechanical systems withbacklash-a survey[J]. Automatica, 2002, 38 (10): 1633- 1649.
doi: 10.1016/S0005-1098(02)00047-X |
10 | DEAN S R H, SURGENOR B W, IORDANOU H N. Experimental evaluation of a backlash inverter as applied to a servomotor with gear train[C]//Proc.of the 4th IEEE Conference on Control Applications, 1995: 580-585. |
11 |
WANG C , YANG M , ZHENG W L , et al. Analysis and suppression of limit cycle oscillation for transmission system with backlash nonlinearity[J]. IEEE Trans.on Industrial Electro-nics, 2017, 64 (12): 9261- 9270.
doi: 10.1109/TIE.2017.2711564 |
12 |
YANG M , WANG C , XU D G , et al. Shaft torque limiting control using shaft torque compensator for two-inertia elastic system with backlash[J]. IEEE/ASME Trans.on Mechatronics, 2016, 21 (6): 2902- 2911.
doi: 10.1109/TMECH.2016.2571304 |
13 | MASOUD A E, MAAS J. Limit cycle analysis for drive systems with backlash nonlinearity using an eigenvalue method[C]//Proc.of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2019: 1409-1414. |
14 | HEYNS L J , KRUGER J J . Describing function-based analysis of a nonlinear hydraulic transmission line[J]. IEEE Trans.on Control Systems Technology, 1992, 2 (1): 31- 35. |
15 |
DUARTE F B , MACHADO J T . Describing function of two masses with backlash[J]. Nonlinear Dynamics, 2009, 56 (4): 409- 413.
doi: 10.1007/s11071-008-9410-y |
16 | TIERNO J E, KIM K Y, LACY S L, et al. Describing function analysis of an anti-backlash controller[C]//Proc.of the American Control Conference, 2000: 4164-4168. |
17 | WANG C, YANG M, ZHENG W L, et al. Analysis of limit cycle mechanism for two-mass system with backlash nonlinearity[C]//Proc.of the 42nd IECON Annual Conference of the IEEE Industrial Electronics Society, 2016: 500-505. |
18 | MENG X F , WANG Y , LYU M L . Adaptive NN control for multisteering plane aircraft with dead zone or backlash input nonlinearity[J]. Mathematical Problems in Engineering, 2017, (4): 4684303. |
19 | YANG L , LIU Z , ZHANG Y . Robust fuzzy adaptive yaw moment control of humanoid robot with unknown backlash nonlinearity[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 1- 13. |
20 | MA D Q , LIN H , LI B Q . Chattering-free sliding-mode control for electromechanical actuator with backlash nonlinearity[J]. Journal of Electrical and Computer Engineering, 2017, (3): 6150750. |
21 | LEI L , LI T . Partial state constraints-based control for nonli-near systems with backlash-like hysteresis[J]. IEEE Trans.on Systems Man & Cybernetics Systems, 2018, 3100- 3104. |
22 | YAN L M , JIN H , DAN Z . Adaptive compensation of backlash nonlinearity for servo systems[J]. Journal of System Simulation, 2009, (21): 1498- 1501. |
23 | SUN G F , XU Y M . Finite-time observer-based adaptive control of switched system with unknown backlash-like hysteresis[J]. Complexity, 2019, (12): 3760401. |
24 | LYU W S , FANG W . Adaptive fuzzy finite-time control for uncertain nonlinear systems with asymmetric actuator backlash[J]. International Journal of Fuzzy Systems, 2018, (21): 50- 59. |
25 | LYU Z , LIU Z , XIE K , et al. Adaptive tracking control for switched nonlinear systems with fuzzy actuator backlash[J]. Fuzzy Sets and Systems, 2020, (385): 60- 80. |
26 |
ROSTITI C , LIU Y X , CANOVA M , et al. A backlash compensator for drivability improvement via real-time model predictive control[J]. Journal of Dynamic Systems Measurement and Control, 2018, 140 (10): 104501.
doi: 10.1115/1.4039562 |
27 | DOU L H , DONG L X , CHEN J , et al. Predictive control for mechanical system with backlash based on hybrid model[J]. Journal of Systems Engineering and Electronics, 2009, 20 (6): 1301- 1308. |
28 | DONG R L , TAN Q Y , TAN Y H . A nonsmooth nonlinear programming based predictive control for mechanical servo systems with backlash-like hysteresis[J]. Asian Journal of Control Affiliated with Acpa the Asian Control Professors Association, 2018, 20 (4): 1519- 1532. |
29 | ZHAO H B , WANG C G . A new adaptive control of dual-motor driving servo system with backlash nonlinearity[J]. Indian Academy of Sciences, 2018, 43, 155. |
30 | ZHAO H B , WANG C G . Projection algorithm-based dynamic surface control of dual-motor driving servo system with backlash nonlinearity[J]. IEEE Trans.on Fundamentals of Electronics Communications with Computer Sciences, 2018, 101 (10): 1646- 1657. |
[1] | Yude NI, Ling ZOU, Ruihua LIU, Wantong CHEN, Zhe QIN, Kai WANG. C-band navigation signal modulation mode and performance evaluation of BeiDou system [J]. Systems Engineering and Electronics, 2022, 44(12): 3800-3810. |
[2] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
[3] | Zhiming ZHOU, Zhen LIU, Jianqiang YI, Xiaoxian YAO. Stability of missile damping loop under actuator dynamic response [J]. Systems Engineering and Electronics, 2022, 44(10): 3200-3206. |
[4] | Yingying JIANG, Shuguo PAN, Fei YE, Wang GAO, Chun MA, Hao WANG. Approach for detection of slowly growing fault based on robust estimation and improved AIME [J]. Systems Engineering and Electronics, 2022, 44(9): 2894-2902. |
[5] | Haolun GU, Guorong ZHAO, Jinbo YAO, Chao GAO. Cross layer MAC protocol design of NNSs based on graded nodes [J]. Systems Engineering and Electronics, 2022, 44(7): 2329-2340. |
[6] | Yiping DONG, Ning LIU, Zhong SU, Jingxiao WANG, Hongyang BAI. Integrated navigation method of high-speed spinning flying bodybased on AEKF [J]. Systems Engineering and Electronics, 2022, 44(6): 1977-1983. |
[7] | Zhe LIANG, Zhaofa ZHOU, Zhihao XU, Wenting LYU, Hui DUAN. Angular rate attitude algorithm based on multi-interval information correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1636-1643. |
[8] | Junbao WEI, Haiyan LI, Jing LI. Novel backstepping control for hypersonic vehicle with angle of attack constraint [J]. Systems Engineering and Electronics, 2022, 44(4): 1310-1317. |
[9] | Fenghua XIANG, Binfeng YANG, Bo LI, Zhen ZHAO, Jiaojiao GUO. Target orientation mechanism based on heart-shaped modulated magnetic signal [J]. Systems Engineering and Electronics, 2022, 44(4): 1113-1119. |
[10] | Yajie XU, Yong XIAN, Bangjie LI, Leliang REN, Shaopeng LI, Weilin GUO. Method for improving the precision of hypersonic vehicle inertial navigation system based on neural network [J]. Systems Engineering and Electronics, 2022, 44(4): 1301-1309. |
[11] | Xuping GU, Daquan TANG. Hierarchical cooperative navigation of UAV swarm based on federated filtering algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 967-976. |
[12] | Wei FANG, Yu WANG, Wenjun YAN, Chong LIN. Symbolized flight action recognition based on neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 737-745. |
[13] | Xiaowei FU, Jing PAN. Distributed formation control of UAV swarm with dynamic obstacle avoidance [J]. Systems Engineering and Electronics, 2022, 44(2): 529-537. |
[14] | Dou CHEN, Xiuyun MENG. UAV offline path planning based on self-adaptive coyote optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(2): 603-611. |
[15] | Shuo LI, Shaojie ZHANG, Peng YAN, Han ZHANG, Ke LU. LPV control for helicopter maneuvering flight considering input saturation [J]. Systems Engineering and Electronics, 2022, 44(2): 637-643. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||